
User’s manual of ADPACK Ver. 2.2

Taisuke Ozaki

Japan Advanced Institute of Science and Technology (JAIST),

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Contributors

T. Ozaki (JAIST)

H. Kino (NIMS)

H. Kawai (Kanazawa Univ.)

M. Toyoda (JAIST)

September 28, 2011

Contents

1 About ADPACK 2

2 Installation 3
2.1 Including library . 3
2.2 Installing . 3

3 Test calculation 4

4 Input file 6

5 All electron calculation 15

6 Generation of pseudopotential 17
6.1 Example . 17
6.2 Cutoff radius . 19
6.3 Pseudopotentials for unbound states . 20
6.4 Separable form . 20
6.5 How the MBK scheme is different from the others . 21
6.6 Logarithmic derivative of wave function . 21
6.7 Ghost states . 22
6.8 Partial core correction . 23
6.9 Restart . 23

7 Relativistic calculation 24
7.1 All electron calculation . 24
7.2 Enhancement or depletion of a spin-orbit coupling . 24

8 Generation of pseudo-atomic orbitals 26

9 Virtual atom with fractional nuclear charge 27

10 Finite element method (FEM) calculation 28

11 Output files 29

12 Templates of the input files 29

13 Database of optimized VPS and PAO 29

14 Others 30

1

1 About ADPACK

ADPACK (Atomic Density functional program PACKage) is a program package for atomic density
functional calculations, in which either Schrödinger or Dirac equation under a spherical atomic poten-
tial is numerically solved within a local density approximation (LDA) [1, 2] or a generalized gradient
approximation (GGA) [3] to the exchange-correlation energy. The distribution of this program pack-
age and the source codes follow the practice of the GNU General Public License (GPL) [23]. The
program package can be freely downloadable from http://www.openmx-square.org/.

Features of ADPACK Ver. 2.2 are summarized as follows:

• All electron calculation by the Schrödinger or Dirac equation

• LDA and GGA treatment to exchange-correlation energy

• All electron LDA and Hartree-Fock calculations by a finite element method (FEM) for the
Schrödinger equation

• Pseudopotential generation by the Troullier and Martine (TM) [4] and Bachelet, Hamann, and
Schluter (BHS) [5], and Morrison, Bylander, and Kleinman (MBK) [6] schemes

• Pseudopotential generation for unbound states by Hamann’s scheme [9]

• Kleinman and Bylander (KB) separable pseudopotential [7]

• Separable pseudopotential with Blöchl multiple projectors [8]

• Partial core correction to exchange-correlation energy [14]

• Logarithmic derivatives of wave functions [16]

• Detection of ghost states in separable pseudopotentials [17]

• Scalar relativistic treatment [18]

• Fully relativistic treatment with spin-orbit coupling [6, 19]

• Generation of pseudo-atomic orbitals under a confinement potential [15]

• Analysis of wave functions

• Analysis of electron density

• Database of pseudopotentials and pseudo-atomic orbitals

The norm-conserving pseudopotentials and pseudo-atomic orbitals generated by ADPACK could be
input data to OpenMX, a program package of performing density functional calculations for molecules
and solids. It is expected that ADPACK is executable on a standard unix-like environment such as
unix, linux, and cygwin [22], since the code is written in a standard C language. A database of
pseudopotentials and pseudo-atomic orbitals is also found in the above website.

2

2 Installation

2.1 Including library

ADPACK uses one library package, LAPACK (http://www.netlib.org/), which must be linked during
the compilation. Instead of LAPACK, an alternative library such as ATLAS, MKL, and ACML can
be used as well. To link an library, CC and LIB in makefile stored in the directory, ’source’, have to
be property changed depending on your computational environment. The default setting for CC and
LIB are

CC = gcc -Dnoomp -std=c99 -O3 -I/usr/local/include -I/home/ozaki/include

LIB = -L/home/ozaki/lib -latlas_p4 -static

We strongly recommend for users to use the gnu C compiler (gcc), since our all test calculations were
performed using an executable file compiled with gcc. Among the compiler options shown above,
-Dnoomp and -std=c99 should remain unchanged when gcc is used, the other parts must be property
changed.

2.2 Installing

After downloading adpack2.2.tar.gz, decompress it as follows:

% tar zxvf adpack2.2.tar.gz

When it is completed, you can find four directories (source, work, work FEMLDA, work FEMHF) un-
der the directory, adpack2.2. The directory, ’source’, contains source files, and ’work’, ’work FEMLDA’,
’work FEMHF’ contain input files for conventional, FEMLDA, and FEMHF calculations, respectively.
Then, move to the directory, ’source’, and change CC and LIB in makefile as explained in the subsec-
tion, Including library. After setting CC and LIB, install as follows:

% make install

When the compile is completed normally, then you can find the executable file, adpack, in the directory,
’work’. To make the execution of ADPACK efficient, you can change a compiler and compile options
appropriate for your computational environment, which can generate an optimized executable file.
Then, it might be made by specifying CC in the makefile which exists in directory, ’source’. The
default for the specification of CC is as follows:

CC = gcc -Dnoomp -std=c99 -O3 -I/usr/local/include -I/home/ozaki/include

However, it is highly recommended to use the gnu C compiler (gcc) for the numerical stability, since our
all test calculations were performed using an executable file compiled with gcc. Among the compiler
options shown above, -Dnoomp and -std=c99 should remain unchanged when gcc is used, the other
parts must be property changed.

3

3 Test calculation

If the installation is completed normally, move to the directory ’work’, and then you can perform the
program, adpack, using an input file, C.inp as follows:

% adpack C.inp

The test input file, C.inp, is for performing the SCF calculation of a carbon atom. The calculation is
performed in only several seconds by a 2.4 GHz Xeon machine, although it is dependent on a computer.
When the calculation is completed normally, three files (C0.alog, C0.ao, and C0.aden) are output to
the directory, ’work’. C0.alog is the log file of the calculation which includes the contents of an input
file, the convergence history in SCF steps, and the total energy decomposed to the contributions. A
part of the file, C0.alog, is shown below. It is found that the convergence is achieved by 12 SCF steps
for the eigenvalues energy of a Kohn-Sham equation, Eeigen, and the norm of the difference between
the input and output densities.

SCF history in all electrons calculations

SCF= 1 Eeigen=-31.1432610521402 (Hartree) NormRD= 9.7504824337909

SCF= 2 Eeigen=-31.2507824481920 (Hartree) NormRD= 9.6908568790503

SCF= 3 Eeigen=-29.2904374089900 (Hartree) NormRD= 6.4223342805654

SCF= 4 Eeigen=-24.3586103571626 (Hartree) NormRD= 1.3490158536346

SCF= 5 Eeigen=-21.9965036829842 (Hartree) NormRD= 0.1523028186916

SCF= 6 Eeigen=-21.5002109590127 (Hartree) NormRD= 0.0119067469939

SCF= 7 Eeigen=-21.3467192266812 (Hartree) NormRD= 0.0005718475963

SCF= 8 Eeigen=-21.3045977061498 (Hartree) NormRD= 0.0000175378857

SCF= 9 Eeigen=-21.2984619045622 (Hartree) NormRD= 0.0000005376916

SCF= 10 Eeigen=-21.2965170176425 (Hartree) NormRD= 0.0000000125540

SCF= 11 Eeigen=-21.2966277103150 (Hartree) NormRD= 0.0000000012975

SCF= 12 Eeigen=-21.2964361910017 (Hartree) NormRD= 0.0000000000864

The eigenvalues and the total energy, Etot, are also output in C0.alog.

Eigenvalues (Hartree) in all electrons calculations

n= 1 l= 0 -9.9479219357833

n= 2 l= 0 -0.5009865574917

n= 2 l= 1 -0.1993096022259

Energies (Hartree) in all electrons calculations

4

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

0 1 2 3 4
−5

0

5

10

15

20

25

r (a.u.)

rh
o(

r)

r (a.u.)
R

ad
ia

l w
av

e
fu

nc
tio

n

1s
2s
2p

a) b)

Figure 1: (a) Electron density of a carbon atom, (b) Radial wave functions of a carbon atom

Eeigen = -21.2964361910017

Ekin = 37.1873926464442

EHart = 17.6249339614759

Exc = -4.7271002754349

Eec = -87.5097256776491

Etot = Ekin + EHart + Exc + Eec

Etot = -37.4244993451638

The electron density ρ(r) as a function of radius is output in a file, C0.aden. Figure 1(a) shows electron
density of a carbon atom stored in C0.aden. In the file, C0.aden, the first, second, third columns mean
log(r), r, and the electron density in all a.u., respectively. The order of data is also similar in the other
files. The radial wave functions, shown in Fig. 1(b), are output in a file, C0.ao, in which they are
listed in order of log (r), r, and the radial wave functions of l=0 for n=1. For n=2 or subsequent ones,
radial wave functions are stored in the same order as that for n=0. However, note that the ingredients
are output up to l=n-1 as follows:

n=1

log(r), r, l=0

...............

n=2

log(r), r, l=0, l=1

....................

n=3

log(r), r, l=0, l=1, l=2

.........................

5

4 Input file

An input file, C.inp, is shown below. This input file has a flexible data format, in which a parameter
is given behind a keyword, the order of keywords is arbitrary, and a blank and a comment can also be
described freely.

#

File Name

#

System.CurrrentDir ./ # default=./

System.Name C0

Log.print Off # ON|OFF

System.UseRestartfile yes # NO|YES, default=NO

System.Restartfile C0 # default=null

#

Calculation type

#

eq.type sch # sch|sdirac|dirac

calc.type all # ALL|VPS|PAO

xc.type LDA # LDA|GGA

#

Atom

#

AtomSpecies 6

max.occupied.N 2

total.electron 6.0

valence.electron 4.0

<occupied.electrons

1 2.0

2 2.0 2.0

occupied.electrons>

#

parameters for solving 1D-differential equations

#

grid.xmin -8.0 # default=-7.0 rmin(a.u.)=exp(grid.xmin)

grid.xmax 2.8 # default= 2.5 rmax(a.u.)=exp(grid.xmax)

grid.num 2000 # default=4000

grid.num.output 500 # default=2000

#

SCF

#

6

scf.maxIter 60 # default=40

scf.Mixing.Type simple # Simple|GR-Pulay

scf.Init.Mixing.Weight 0.10 # default=0.300

scf.Min.Mixing.Weight 0.001 # default=0.001

scf.Max.Mixing.Weight 0.800 # default=0.800

scf.Mixing.History 7 # default=5

scf.Mixing.StartPulay 9 # default=6

scf.criterion 1.0e-10 # default=1.0e-9

#

Pseudopotetial, cutoff (A.U.)

#

vps.type TM # BHS|TM

number.vps 2

<pseudo.NandL

0 2 0 1.50 0.0

1 2 1 1.62 0.0

pseudo.NandL>

Blochl.projector.num 4 # default=1 which means KB-form

local.type polynomial # Simple|Polynomial

local.part.vps 1 # default=0

local.cutoff 1.50 # default=smallest_cutoff_vps

local.origin.ratio 4.00 # default=3.0

log.deri.RadF.calc on # ON|OFF

log.deri.MinE -3.0 # default=-3.0 (Hartree)

log.deri.MaxE 2.0 # default= 2.0 (Hartree)

log.deri.num 50 # default=50

<log.deri.R

0 2.2

1 2.4

log.deri.R>

ghost.check off # ON|OFF

#

Core electron density for partial core correction

pcc.ratio=rho_core/rho_V,

pcc.ratio.origin = rho_core(origin)/rho_core(ip)

#

charge.pcc.calc on # ON|OFF

pcc.ratio 0.25 # default=1.0

pcc.ratio.origin 5.00 # default=6.0

#

Pseudo atomic orbitals

#

maxL.pao 2 # default=2

num.pao 5 # default=7

7

radial.cutoff.pao 5.0 # default=5.0 (Bohr)

height.of.wall 20000.0 # default=4000.0 (Hartree)

rising.edge 0.2 # default=0.5(Bohr),r1=rc-rising.edge

search.LowerE -3.000 # default=-3.000 (Hartree)

search.UpperE 20.000 # default=20.000 (Hartree)

num.of.partition 300 # default=300

matching.point.ratio 0.67 # default=0.67

The specification of each keyword is as follows:

Common keywords for calc.type=ALL|VPS|PAO

System.CurrrentDir
The directory that files are output.

System.Name
The file name of output files.

Log.print
The informations during the calculation are output to the standard output. Specify Log.print=ON
when outputting, or Log.print=OFF when non-outputting. This keyword is used for developers.

System.UseRestartfile
For an atom with a large atomic number, all electron calculation requires a considerable computational
time. So, it is needed to reduce the computational time when optimal cutoff radii of pseudopotentials
are determined in a trial and error. If the keyword, System.UseRestartfile, is specified as YES, a restart
file which contains informations of all electron calculation is used in order to skip the all electron
calculation. If there is no restart file, a restart file is generated in case of System.UseRestartfile=YES.

System.Restartfile
If System.UseRestartfile=YES, then the name specified by the keyword, System.Restartfile, is referred
to as a restart file.

eq.type
The keyword, eq.type, specifies the type of equation. For the non-relativistic Kohn-Sham equation,
please specify ’sch’. On the other hand, for the scalar and fully relativistic Kohn-Sham equation,
please specify ’sdirac’ and ’dirac’, respectively.

calc.type
The keyword specifies a calculation type. The SCF calculation for all electron calculation (ALL),
the generation of pseudopotentials (VPS), or the generation of pseudo-atomic orbitals (PAO) with
a confinement potential are available. In addition to the three schemes, ALLFEM (FEMLDA) and
FEMHF are available for the all electron LDA and HF calculations using the finite element method
(FEM) [11], respectively. Due to a technical reason during development, two specifications, ALLFEM
and FEMLDA are equivalent to each other.

xc.type
Approximate method (LDA or GGA) used for an exchange correlation energy, where LDA is a form

8

parametrized by Perdew and Zunger [1], and GGA is a form proposed by Perdew, Burke, and Ernzerhof
[3]. Also, a LDA functional proposed by Vosko, Wilk, and Nusair is available by LDA-VWN [2].

AtomSpecies
Give the atomic number.

max.occupied.N
Give the maximum number of the principal quantum number, n, for occupied electrons.

total.electron
Give the total number of electrons in an atom. It is also possible to give the number of electrons
corresponding to not only a neutral atom, but also a positive or negative charged atom. However,
note that it becomes difficult to achieve the convergence in the SCF calculation for a negative atom
(there are more electrons than atomic number), since wave functions tend to be delocalized or unbound
spatially.

valence.electron
Give the number of electrons of valence electrons.

occupied.electrons
Give the number of electrons occupied in each orbital. As seen in C.inp, when 1s, 2s, and 2p orbitals
of a carbon atom are occupied by two electrons in consideration of the spin degeneracy, respectively,
they are specified as follows:

<occupied.electrons

1 2.0

2 2.0 2.0

occupied.electrons>

The beginning of the description must be <occupied.electrons, and the last of the description must
be occupied.electrons>.

grid.xmin
The radial Kohn-Sham equation is solved numerically by a modified Euler type method from both a ra-
dial point rmin near the origin and a distant radial point rmax (a.u.). Here, a radial point rmin near the
origin is specified by the keyword, grid.xmin. Note that there is a relation, rmin(a.u.)=exp(grid.xmin).
In case of the FEM calculation, a different type of grid is used. See the section, FEM calculation, for
the detail.

grid.xmax
The keyword, grid.xmax, specifies a distant radial point rmax (a.u.) which begins to solve a Kohn-
Sham equation. As well as grid.xmin, note that rmax(a.u.)=exp(grid.xmax). The selection of a suitable
grid.xmax is dependent on an atom. For an atom with only localized electrons such as carbon and
oxygen, the use of about 2.5 (a.u.) is recommended as grid.xmax. In case of an atom such as Na,
Ti, Fe with delocalized electrons, the use of about 3.0 (a.u.) or more is recommended as grid.xmax.
Moreover, a large value for grid.xmax should be used when a atom is charged negatively. In case of
the FEM calculation, a different type of grid is used. See the section, FEM calculation, for the detail.

9

grid.num
The radial coordinate r is discretized to solve the radial Kohn-Sham equation by a modified Euler
type method. The number of division is specified by grid.num. The actual mesh division is done for
x (=log(r)) as dx=(grid.xmax-grid.xmin)/(grid.num-1) rather than for r to cope with large variations
near the origin of potential and wave functions. In case of the FEM calculation, a different type of
grid is used. See the section, FEM calculation, for the detail.

grid.num.output
It is possible to change the number of grids for r in output files by the keyword, grid.num.output,
although the actual calculation is performed using grid.num.

scf.maxIter
The maximum number of SCF iterations is specified by the keyword, scf.maxIter. The SCF loop is
terminated at the number specified by scf.maxIter even if the convergence criterion is not satisfied.

scf.Mixing.Type
A mixing method of generating an input electron density at the next SCF step is specified by keyword,
scf.Mixing.Type. Three schemes are available: Simple, GR-Pulay, and Pulay, which are the simple
mixing method, GR-Pulay method (Guaranteed-Reduction Pulay method) [12], and the Pulay method
[13], respectively. The simple mixing method used here is modified to accelerate the convergence by
referring to a convergence history. So, the use of the simple mixing method is recommended because
of its robustness.

scf.Init.Mixing.Weight
The keyword, scf.Mixing.Weight, gives an initial mixing weight used by all the mixing methods in
ADPACK . The valid range is 0 <scf.Mixing.Weight< 1.

scf.Min.Mixing.Weight
The keyword, scf.Init.Mixing.Weight, gives the lower limit of a mixing weight in the simple mixing
method.

scf.Max.Mixing.Weight
The keyword, scf.Max.Mixing.Weight, gives the upper limit of a mixing weight in the simple mixing
method.

scf.Mixing.History
In the GR-Pulay and Pulay methods, the input electron density at the next SCF step is calculated
by making use of the output electron densities in the several previous SCF steps. The keyword,
scf.Mixing.History, specifies the number of previous SCF steps which are taken into account for the
calculation. For example, scf.Mixing.History is specified to be 3, and the SCF step is 6th. Then, the
output electron density at 5, 4, and 3 SCF steps are taken into account to construct an optimum input
electron density.

scf.Mixing.StartPulay
The SCF step which starts the GR-Pulay or Pulay method is specified by the keyword, scf.Mixing.StartPulay.
The simple mixing method is employed in SCF steps before starting GR-Pulay or Pulay method.

scf.criterion

10

The keyword, scf.criterion, specifies a convergence criterion for the SCF calculation. The SCF iteration
is terminated when a condition, NormRD<scf.criterion, is satisfied, where a norm of the deviation be-
tween the input and output electron densities, NormRD, is defined by 4π

∫ rmax
rmin

(ρinp(r)−ρout(r))2r2dr.

Specific keywords fo calc.type=VPS|PAO

vps.type
When VPS is chosen for the keyword, calc.type, the keyword, vps.type, specifies a generation method
of pseudopotentials. Either BHS [5], TM [4], or MBK [6] is available.

number.vps
Give the total number of pseudopotentials that you want to generate.

pseudo.NandL
The keyword, pseudo.NandL, specifies a set of a principal quantum number, N, and an angular mo-
mentum quantum number, L, of pseudopotentials corresponding to the number of potentials specified
by the keyword, number.vps. For example, if number.vps is chosen to be 2 for a carbon atom, and
the pseudopotentials for 2s and 2p orbitals are generated, then specify in the following way:

<pseudo.NandL

0 2 0 1.3 0.0

1 2 1 1.3 0.0

pseudo.NandL>

The first column specifies a serial number beginning from zero, which is used in the specification of the
keyword, local.part.vps. In the second or third columns, a principal number and an angular momen-
tum quantum number are given. The fourth column provides a cutoff radius (a.u.) for the generation
of pseudopotentials. Although an optimum cutoff radius is determined so that the generated pseu-
dopotential has a smooth shape without distinct kinks and a lot of nodes, however, the choice is made
in a somewhat empirical way. The fifth column provides an energy at which each pseudopotential
is generated. However, if the state is occupied (non-zero occupation), then the eigenenergy is used
instead of the value given by the fifth column. The energy given by the fifth column is used for only a
state with zero occupation. Regardless of the occupation number, the fifth column has to be provided.
The beginning of the description must be <pseudo.NandL, and the last of the description must be
pseudo.NandL>.

Blochl.projector.num
The keyword, Blochl.projector.num, specifies the number of projectors for each L-component in sep-
arable pseudopotentials. If you specify 1 for Blochl.projector.num, this means the Kleinman and
Bylander (KB) separable pseudopotential. As the number of Blochl.projector.num increases, the sep-
arable pseudopotential converges the semilocal non-separable pseudopotential. We recommend you to
use 2 or 3 for Blochl.projector.num in order to increase the transferability of the separable pseudopo-
tential. We guess that you might consider the increase of computational efforts due to the increasing
projectors. However, the matrix elements for the non-local part are evaluated outside the SCF loop.
Therefore, the computational demand for a larger number of projectors is quite small.

11

local.type
The keyword, local.type, specifies a way for generating the local part of pseudopotentials. ’Simple’
means that a l-component of pseudopotential, specified by the keyword (local.part.vps), is used as the
local part. ’Polynomial’ means that the local part for the inside of a cutoff radius is generated using
a polynomial and that the outer part is proportional to -1/r. At the cutoff radius the two parts are
connected so that up to third derivatives are continuous.

local.part.vps
When ’Simple’ for the keyword, local.type, is used, the keyword, local.part.vps, specifies the local
potential used in the generation of factorized pseudopotentials. In this specification, please choose the
number of the first column in the specification of the keyword, pseudo.NandL.

local.cutoff
When ’Polynomial’ is used for the keyword, local.type, the cutoff radius, rlc (a.u.), at which a poly-
nomial local part is connected to −Nv/r, is specified by the keyword, local.cutoff, where Nv is the
number of valence electrons in the pseudopotential generation.

local.origin.ratio
When ’Polynomial’ is used for the keyword, local.type. The keyword, local.origin.ratio, specifies the
value of the local potential at the origin. It should be noted to be VL(0) = local.origin.ratio× VL(rlc).

log.deri.RadF.calc
In case of ’calc.type=VPS’, if you want to calculate the logarithmic derivatives of radial wave func-
tions for the all electron potential, semilocal pseudopotentials, and separable pseudopotentials, then,
please specify ON for the keyword, log.deri.RadF.calc. If not so, please specify OFF. The calculated
logarithmic derivatives are output to the file, *.ld0,*.ld1,..., where * means ’System.Name’ you spec-
ified, the number attached to the last of the file extension ’ld’ is the angular momentum number
L. In these files, the first column is energy, the second (D0), third (D1), and fourth (D2) columns
are the logarithmic derivatives of radial wave functions for the all electron potential, the semilocal
non-separable pseudopotential, and the separable pseudopotential, respectively. In addition to the
output of logarithmic derivatives to the files, an useful quantities, I0 and I1, are evaluated in order to
discriminate the transferability of the separable pseudopotentials by

I0 =
∫ log.deri.MaxE

log.deri.MinE
(D0 −D2)2dE

I1 =
∫ log.deri.MaxE

log.deri.MinE
(D1 −D2)2dE

Ideally, the maximum transferability can be obtained when I0 and I1 are zero. So, it is desirable
to make pseudopotentials with small I0 and I1. I0 and I1 are output on the standard output (your
display).

log.deri.MinE
In case of ’calc.type=VPS’ and ’log.deri.RadF.calc=ON’, the keyword, log.deri.MinE, gives the lower
bound of energy (Hartree) used in the calculation of logarithmic derivatives of radial wave functions.

log.deri.MaxE
In case of ’calc.type=VPS’ and ’log.deri.RadF.calc=ON’, the keyword, log.deri.MaxE, gives the upper

12

bound of energy (Hartree) used in the calculation of logarithmic derivatives of radial wave functions.

log.deri.R
In case of ’calc.type=VPS’ and ’log.deri.RadF.calc=ON’, the keyword, log.deri.R, gives the radius
(a.u.) at which the logarithmic derivatives of radial wave functions are evaluated. If eq.type=sch or
eq.type=sdirac, the keyword, log.deri.R, is specifid for each angular momentum number L as follows:

<log.deri.R

0 2.2

1 2.4

log.deri.R>

The beginning of the description must be <log.deri.R, and the last of the description must be
log.deri.R>. The first column is the angular momentum number L, and the second column is the
radius at which the logarithmic derivatives of radial wave functions are evaluated. If eq.type=dirac,
the third column is needed as follows:

<log.deri.R

0 2.0 1.9

1 2.0 2.1

log.deri.R>

where the second and third column give the radii at which the logarithmic derivatives of radial wave
functions of j = l + 1/2 and j = l − 1/2 are evaluated, respectively.

ghost.check
In case of ’calc.type=VPS’, if you want to check whether there are ghost states for the generated
separable pseudopotentials, please specify ON for the keyword, ghost.check. If not so, please specify
OFF for the keyword. The calculation result appears on the standard output (your display).

charge.pcc.calc
A charge density used for a partial core correction (PCC) to the exchange-correlation functional [14]
is calculated by turning charge.pcc.calc on.

pcc.ratio
The keyword, pcc.ratio, is a parameter in the calculation of a partial core electron density. The core
electron density is approximated using a fourth order polynomial below the cutoff radius rpcc at which
the ratio ρc/ρv between the core electron density ρc and the valence electron density ρv becomes
pcc.ratio.

pcc.ratio.origin
The keyword, pcc.ratio.origin, is a parameter in the calculation of a partial core electron density. The
core electron density is approximated using a fourth order polynomial, so that the core electron at the
origin satisfies a relation, ρc(0)=pcc.ratio.origin×ρc(rpcc).

Specific keywords for calc.type=PAO

13

maxL.pao
The pseudo-atomic orbitals are generated up to an angular momentum quantum number, maxL.pao.

num.pao
The number of pseudo-atomic orbitals generated with the same angular momentum quantum number.

radial.cutoff.pao
The keyword, radial.cutoff.pao, specifies a cutoff radius rc(a.u.) for the pseudo-atomic orbitals.

height.of.wall
The keyword, height.of.wall, specifies a height (Hartree) of confinement wall.

rising.edge
The keyword, rising.edge, controls a shape of rising edge of the confinement wall. Note that there is
a relation r1=rc−rising.edge. See also the section, Generation of pseudo-atomic orbitals.

search.LowerE
The keyword, search.LowerE, gives the lower bound of energy for searching eigenenergies of pseudo-
atomic orbitals.

search.UpperE
The keyword, search.UpperE, gives the upper bound of energy for searching eigenenergies of pseudo-
atomic orbitals.

num.of.partition
The keyword, num.of.partition, gives the number of energy partitioning, ranging from the search.LowerE
to the search.UpperE. First, the eigenstates of pseudo-atomic orbitals are roughly explored for the
energy ranges partitioned by the keyword, num.of.partition. Then, the eigenstates are refined in the
energy range with a correct number of nodes.

matching.point.ratio
The keyword, matching.point.ratio, gives a matching point to connect two wave functions solved from
the origin and the distant. It should be noted that the matching grid number is given by match-
ing.point.ratio × grid.num.

14

5 All electron calculation

In this section, keywords for the all electron calculation are explained. These keywords discussed here
are important for all calculations including the generation of pseudopotentials and pseudoatomic basis
functions, since both the generations of pseudopotentials and pseudo-atomic orbitals are based on the
all electron calculation. The list of keywords and some comment for the all electron calculation are as
follows:

1. xc.type

Choose GGA, LDA, or LDA-VWN

2. total.electron

Give the total number of electrons. It is also possible to give the number of electrons corre-
sponding to not only a neutral atom, but also a positive or negative charged atom.

3. grid.xmin

Set grid.xmin (rmin(a.u.)=exp(grid.xmin)), where rmin is the minimum radius from which radial
differential equations are solved toward a distant. An appropriate value for grid.xmin is -7.0
from H to Kr, and -10.0 for heavier atoms.

4. grid.xmax

Set grid.xmin (rmax(a.u.)=exp(grid.xmax)), where rmax is the maximum radius from which radial
differential equations are solved toward the origin. An appropriate value for grid.xmin is 2.5 to
4.0, but could depend on whether there are delocalized states or not.

5. grid.num

Set the number of grids to solve radial differential equations. A larger number of grids gives
a higher degree of accuracy, while the computational time increases. An appropriate value for
grid.num is 3000 to 12000. For heavier atoms, the use of a larger number of grids is better to
achieve a reliable calculation.

6. grid.num.output

It is possible to change the number of grids for r in output files by the keyword, grid.num.output,
although the actual calculation is performed using grid.num. Usually, we use 500 for it.

7. scf.maxIter

Set the maximum number of SCF iteration.

8. scf.Mixing.Type

Choose a method for charge mixing. Either simple, GR-Pulay, or Pulay is available. In most
cases, the simple mixing scheme is enough to achieve a sufficient convergence.

9. scf.Min.Mixing.Weight

Set the minimum mixing weight.

10. scf.Max.Mixing.Weight

Set the maximum mixing weight.

15

11. scf.Mixing.History

Set previous SCF steps for charge mixing in the GR-Pulay or Pulay method.

12. scf.Mixing.StartPulay

Set a SCF iteration number from which the GR-Pulay or Pulay starts.

13. scf.criterion

Set scf.criterion. At least 1.0e-10 for the keyword should be chosen for a convergent calculation.

16

6 Generation of pseudopotential

6.1 Example

Generation of pseudopotentials is illustrated for the case of a carbon atom. Please set the keyword,
calc.type, to VPS in the input file C.inp, and perform as follows:

% adpack C.inp

When the calculation is completed normally, the following eight files are newly generated in the
directory, ’work’.

C0.nsvps non-separable pseudopotentials

C0.vps input file, results of the SCF calculation, and pseudopotentials

in the KB or Blochl separable form,

and partial core density for PCC

C0.vpao radial parts of pseudo-atomic orbitals for pseudopotentials

C0.vden valence electron density, the total electron density,

core electron density,

modified core electron density for PCC

C0.loc local part of pseudopotentials

C0.ld0 logarithmic derivatives of wave functions(l=0).

C0.ld1 logarithmic derivatives of wave functions(l=1).

C0.ld2 logarithmic derivatives of wave functions(l=2).

C0.nsvps
In a file, C0.nsvps, the pseudopotentials in a non-separable form are output, in which they are listed in
order of log (r), r, the pseudopotential 0, and the pseudopotential 1, ..., where the number referred to
specify the pseudopotential corresponds to the number given for the first column in the specification
of the keyword, pseudo.NandL, in the input file. All the units employed are in atomic unit. Figure 2
shows the pseudopotentials of a carbon atom stored in the file, C0.nsvps.

C0.vps
In a file, C0.vps, the pseudopotentials in a separable form are output, in which they are listed in order
of log (r), r, the local part of the pseudopotential, and the non-local part of the pseudopotential. Also,
the input file and the results of the SCF calculation are added in this file for your adversaria. The
file is output in the flexible data format, since the file *.vps is used for the input file to the program
package, OpenMX. In Fig. 2(b) shows the separable pseudopotentials of a carbon atom. In case of
charge.pcc.calc=ON, then the file also includes the partial core density for PCC [14]. The format is
the same as that of the pseudopotential, and they are listed in order of log (r), r, and the partial core
density. The data of the partial core density is also used as the input date of OpenMX. In Fig. 3, the
partial core density is shown together with the valence electron density stored in the file, C0.vden.

C0.vpao
The pseudo-atomic orbitals corresponding to the pseudopotentials are output in a file, C0.vpao. The
format of the output is the same as that of C0.nsvps. Figure. 2(a) shows the pseudo-atomic orbitals
and the pseudopotentials.

17

0 1 2 3 4 5 6

−8

−6

−4

−2

0

2

4

6

−0.4

0

0.4

0.8

0 1 2 3 4 5 6

−10

−6

−2

2

6

r (a.u.)

P
se

ud
o

po
te

nt
ia

l (
H

ar
tr

ee
)

R
adial w

ave function

s−component
p−component

r (a.u.)

Local
Non−local (s)

F
ac

to
riz

ed
 p

se
ud

o
po

te
nt

ia
l (

H
ar

tr
ee

)

Non−local (p)

Figure 2: (a) Radial parts of the pseudo-atomic orbitals and the corresponding norm-conserving
pseudopotentials, (b) Norm-conserving pseudopotentials in a separable form.

C0.vden
The electron density for the valence electron is stored in a file, C0.vden.
In case of charge.pcc.calc=OFF, the data are output in order of

log(r), r, ρv, ρt, ρc, 4πr2ρv, 4πr2ρt, 4πr2ρc.

In case of charge.pcc.calc=ON, the data are output in order of

log(r), r, ρv, ρt, ρc, ρpcc 4πr2ρv, 4πr2ρt, 4πr2ρc, 4πr2ρpcc.

where
ρv: Valence electron density,
ρt: Total electron density,
ρc: Core electron density,
ρpcc: Modified core electron density for PCC.

C0.loc
The local part of separable pseudopotentials is output in the file, C0.loc, in order of log (r), r, and the
local part. Figure. 2(b) shows the local part of the pseudopotentials.

C0.ld*
The logarithmic derivatives of radial wave functions are output in the file, C0.ld*, where * means the
angular momentum quantum number. The data are stored in order of energy and the logarithmic
derivatives of radial wave functions under the all electron potential, semi-local pseudopotential, and
fully separable pseudopotential.

18

0 1 2 3
0

0.2

0.4

r (a.u.)

E
le

ct
ro

n
de

ns
ity

 (
a.

u.
) Valence electron

Partial core density

Figure 3: Valence electron and partial core densities of a carbon atom

In the generation of pseudopotentials, it is possible to choose either the BHS type, the TM type,
or the MBK type. In the template file, C.inp, the TM type is chosen as the generation scheme.
In practice, the choice of a suitable cutoff radius in the pseudopotential generation is made by trial
and error so that the shape of the generated pseudopotentials can be smooth. Also, it is required
to carefully check whether appropriate results are obtained or not for physical quantities that you
want to calculate when density functional calculations are performed for molecules and solids using
the generated pseudopotentials. In addition to this, a proper choice of valence states have be checked
by a series of benchmark calculations.

6.2 Cutoff radius

Cutoff radii of pseudopotentials are specified by the following keyword:

<pseudo.NandL

0 2 0 1.50 0.0

1 2 1 1.62 0.0

pseudo.NandL>

The first number specifies a serial number beginning from zero, which is used in the specification
of the keyword, local.part.vps. In the second or third columns, a principal number and an angu-
lar momentum quantum number are given. The fourth column provides a cutoff radius (a.u.) for
the generation of pseudopotentials. Although an optimum cutoff radius is determined so that the
generated pseudopotentials has a smooth shape without distinct kinks and a lot of nodes, however,
the selection includes somewhat an empirical factor. The fifth column provides an energy at which
each pseudopotential is generated. However, if the state is occupied (non-zero occupation), then the
eigenenergy is used instead of the value given by the fifth column. The energy given by the fifth

19

column is used for only a state with zero occupation. Regardless of the occupation number, the fifth
column has to be provided. It is also possible to take into account semicore states in the generation of
pseudopotentials. For example, if you want to include 3s and 3p states as semicore states in a sodium
atom, the specification is as follows:

<pseudo.NandL

0 3 0 1.8 0.0

1 3 1 2.3 0.0

2 4 0 1.8 0.0

3 4 1 2.3 0.0

pseudo.NandL>

In this case, a pseudopotential is generated for the lowest state in each angular momentum quantum
number in the BHS [5] and TM [4] schemes. On the other hand, the MBK scheme [6] takes multiple
states with the same angular momentum into account in the construction of pseudopotential. The
treatment significantly increases the transferability of pseudopotential. So, in most cases the MBK
scheme is the best choice in ADPACK Ver. 2.2.

6.3 Pseudopotentials for unbound states

It is possible to generate pseudopotentials for unbound states with for any higher L-component by
Hamann’s scheme [9]. For example, although no electron is occupied for the 3d state in the input file
’C.inp’, the cutoff radius for the 3d state can be specified as follows:

number.vps 3

<pseudo.NandL

0 2 0 1.50 0.0

1 2 1 1.62 0.0

2 3 2 1.00 0.0

pseudo.NandL>

The pseudopotential generation of the 3d state will be generated with the cutoff radius, and then the
reference energy is 0.0 (a.u.). A principal number and an angular momentum quantum number for
the unbound state should be given as the state above occupied states but with the smallest principal
number.

6.4 Separable form

Norm-conserving pseudopotentials generated by the BHS and TM schemes are written in a semi-
local form which is based on a projection by the spherical harmonic function. In the application of
pseudopotentials to molecules and bulks, the semi-local form is rewritten by a fully separable form
proposed by Kleinman and Bylander (KB) [7], or Blöchl [8], to reduce the computational effort. Then,
the following keywords are important for transferability of the separable form.

20

• Blochl.projector.num

The number of Blöchl projectors for each L-component in separable pseudopotentials. If you
specify 1 for Blochl.projector.num, this means the Kleinman and Bylander (KB) separable pseu-
dopotentials.

• local.type

’Simple’ and ’Polynomial’ are available.

• local.part.vps

Number of local potential in case of local.type=Simple

• local.cutoff

The cutoff radius of local part in case of local.type=Polynomial

• local.origin.ratio

Depth of local part at the origin in case of local.type=Polynomial

Although the MBK scheme also constructs a separable form in a different way, the proper selection of
above the keywords is important as well. You can find details for these keyword in the section, Input
file.

6.5 How the MBK scheme is different from the others

The MBK pseudopotential [6] is a norm-conserving version of the Vanderbilt’s ultrasoft pseudopoten-
tial [10]. The feature allows us to take multiple states with the same angular momentum quantum
number into account for construction of a separable pseudopotential. Thus, it is guaranteed that
the MBK scheme is more accurate than the other schemes when semi-core states are included in the
construction of pseudopotential. When the MBK scheme is used, one must care the reference energy
given by the fifth column in the specification by the keyword, pseudo.NandL. Generally, the energy of
zero is a good starting point for further trial and error. Since in the MBK scheme the number of pro-
jectors in the separable form is determined by the number of states with the same angular momentum
quantum number, the number of projectors can be different from each other depending on the choice
of valence states. Also, it should be noted that even if the MBK scheme is employed by the keyword,
vps.type, the TM scheme is employed for angular momentum quantum number with only one state,
and the number of projectors is determined by the keyword, Blochl.projector.num for the separable
pseudopotential with the angular momentum quantum number.

6.6 Logarithmic derivative of wave function

To check the transferability of generated pseudopotentials, a useful measure is to compare logarithmic
derivatives of wave functions [16]. If the logarithmic derivative of pseudopotential is comparable to that
by the all electron calculation through a wide range of energy, then the pseudopotential would possess
a good transferability. In Fig. 4 shows the logarithmic derivatives in a carbon atom, indicating a good
transferability of the pseudopotential. The keywords concerned to the calculations of the logarithmic
derivative are as follows:

21

−2 −1 0 1 2

−6

−4

−2

0

2

4

6

−2 −1 0 1 2

−6

−4

−2

0

2

4

6All electron
Semi−local
Fully separable

s−state p−state All electron
Semi−local
Fully separable

Energy (Hartree)

Lo
ga

rit
hm

ic
 d

er
iv

at
iv

es

Figure 4: Logarithmic derivatives of radial wave functions under the all electron potential, semi-local
pseudopotential, and fully separable pseudopotential of a carbon atoms

• log.deri.RadF.calc

When the logarithmic derivatives are calculated, then ON, otherwise, OFF.

• log.deri.MinE

The lower bound of energy (Hartree) used in the calculation of logarithmic derivatives of radial
wave functions.

• log.deri.MaxE

The upper bound of energy (Hartree) used in the calculation of logarithmic derivatives of radial
wave functions.

• log.deri.R

Radius at which the logarithmic derivatives of radial wave functions are evaluated.

You can find details for these keyword in the section, Input file. In case of log.deri.RadF.calc=ON,
calculated logarithmic derivatives are output in files *.ld#, where * is the file name that you specified
by the keyword, System.Name, and # is the angular momentum number. If the fully relativistic
calculation is performed as ’eq.type=dirac’, the file name is *.ld% #, where % runs 0 to 1 corresponding
to j = l + 1/2 and j = l − 1/2, respectively.

6.7 Ghost states

The fully separable form of pseudopotential would possess artificial ghost states [17], which is one
of serious problems in the separable form, while multiple projectors proposed by Blöchl [8] is highly
effective to avoid the existence of ghost states. To check it, a keyword, ghost.check, is provided.

22

Although the keyword is useful to find the ghost states, however, it should be noted that a complete
check to detect the ghost states is difficult.

6.8 Partial core correction

The contribution to electron density from core electrons is ignored in the evaluation of exchange-
correlation energy in the pseudopotential method, although there is an non-linearity of exchange-
correlation energy with respect to electron density. Thus, a partial core correction would be important
in order to take account of the non-linearity. A partial core charge for the partial core correction can
be constructed by the following keywords:

• charge.pcc.calc

When a partial core charge is calculated, ON, otherwise OFF.

• pcc.ratio

The keyword, pcc.ratio, is a parameter in the calculation of a partial core electron density. The
core electron density is approximated using a fourth order polynomial below the cutoff radius
rpcc at which the ratio ρc/ρv between the core electron density ρc and the valence electron density
ρv becomes pcc.ratio.

• pcc.ratio.origin

The keyword, pcc.ratio.origin, is a parameter in the calculation of a partial core electron density.
The core electron density is approximated using a fourth order polynomial so that the core
electron at the origin satisfies a relation, ρc(0)=pcc.ratio.origin×ρc(rpcc).

Note that a precipitous partial core charge would cause numerical instabilities. Thus, a modest
core charge is better from a numerical point of view.

6.9 Restart

As discussed above, a trial and error is needed to generate optimum pseudopotentials. However, all
electron calculation prior to the pseudopotential generation requires a considerable computational
time for an atom with a large atomic number. Therefore, it is desirable to reduce the computa-
tional time that results of the all electron calculation are stored in a file and skip the all electron
calculation when we regenerate pseudopotentials in different parameters. To do this, two keywords,
System.UseRestartfile and System.Restartfile, are available. The details are as follows:

• System.UseRestartfile

For an atom with a large atomic number, all electron calculation requires a considerable com-
putational time. So, it is needed to reduce the computational time, when optimal cutoff radii
of pseudopotentials is determined in trial and error. If the keyword, System.UseRestartfile, is
specified as YES, a restart file which contains informations of all electron calculation is used in
order to skip all electron calculation. If there is no restart file, a restart file is generated in case
of System.UseRestartfile=YES.

• System.Restartfile

If System.UseRestartfile=YES, then the name specified by the keyword, System.Restartfile, is
referred to as a restart file.

23

7 Relativistic calculation

7.1 All electron calculation

Relativistic effects can be included in both the scalar relativistic [18] and the fully relativistic treatment
[5, 19]. To specify these, there are three options for the keyword, eq.type, as follows:

eq.type sch # sch|sdirac|dirac

where ’sch’, ’sdirac’, and ’dirac’ mean the Schrödinger equation (no relativistic effect), a scalar rel-
ativistic treatment, and a fully relativistic treatment of Dirac equation, respectively. In the scalar
relativistic treatment, the coupled Dirac equations are averaged with a weight of j-degeneracy, and
solved by taking account of both the majority and minority components of radial wave function. Thus,
the scalar relativistic treatment includes explicitly kinematic relativistic effects (Darwin and mass ve-
locity terms), and implicitly averaged spin-orbit coupling (no energy splitting). On the other hand,
in the fully relativistic treatment, j-dependent Dirac equations are solved including both the major-
ity and minority components of radial wave function. Thus, energy splitting by spin-orbit coupling
are also considered. In Table 1 shows eigenvalues of atomic platinum calculated by three different
methods.

Table 1: Eigenvalues (Hartree) of atomic platinum calculated by the Schrödinger equation, a scalar
relativistic treatment, and a fully relativistic treatment of Dirac equation within GGA to DFT

state sch sdirac dirac
j=l+1/2 j=l-1/2

1s -2612.2560 -2876.3416 -2868.8969
2s -434.7956 -505.1706 -503.1143
2p -418.0254 -438.1804 -419.1547 -482.3721
3s -101.2589 -118.6671 -118.0772
3p -93.3171 -99.1367 -94.8406 -108.7310
3d -78.3951 -77.8404 -76.1768 -79.1659
4s -21.1326 -25.4989 -25.3346
4p -17.7166 -19.0862 -18.0570 -21.3626
4d -11.4203 -11.2646 -10.9124 -11.5257
4f -3.0221 -2.5775 -2.4568 -2.5821
5s -2.9387 -3.7323 -3.6983
5p -1.8756 -2.0571 -1.8911 -2.43384
5d -0.2656 -0.2259 -0.2020 -0.24966
6s -0.1507 -0.2074 -0.2079

7.2 Enhancement or depletion of a spin-orbit coupling

To study the effect of a spin-orbit coupling, it is possible to generate a pseudopotential with a larger
or smaller spin-orbit coupling compared to that in a real atom. The scaling factors can be specified
to each angular momentum quantum number by the following keyword:

24

<SO.factor

0 1.0

1 0.5

2 2.0

SO.factor>

The beginning of the description must be <SO.factor, and the last of the description must be
SO.factor>.

The number in the first column corresponds to that in the keyword ’pseudo.NandL’, and a scaling
factor is given for each pseudopotential by the second column, where ’1.0’ corresponds to the spin-orbit
coupling in a real atom. One can control the strength of spin-orbit coupling by changing the scaling
factor.

25

8 Generation of pseudo-atomic orbitals

The pseudo-atomic orbitals are used in the program package, OpenMX, as the primitive basis orbitals.
The pseudo-atomic orbitals are generated as follows: first, the SCF calculation is performed in consid-
eration of all electrons under a confinement potential, second, the pseudopotentials are generated, and
finally, the pseudo-atomic orbitals for the confinement pseudopotentials are evaluated numerically up
to a required excited state. In this section, the generation of the pseudo-atomic orbitals is illustrated.
In the file, C.inp, please set the keyword, calc.type, to PAO, and run the executable file, adpack, as
follows:

% adpack C.inp

When the run is completed normally, then you find a file, C0.pao, in the directory, work. In this file,
C0.pao, the valence electron density and the radial parts of the pseudo-atomic orbitals are output.
For your adversaria, the contents of the input file and the results of all electron SCF calculation are
also included. They are stored in order of log(r), r, and the valence electron density, and in order of
log(r), r, and the radial part 1, the radial part 2,..., in the flexible date format, respectively. In Fig. 4,
the confinement potential and the pseudo-atomic orbitals for the s-orbital are shown. From Fig. 4, we
see that the pseudo-atomic orbitals are localized due to the confinement potential, and the number of
nodes increases as the eigenvalue increases. The confinement potential is made by modifying the core
potential as follows:

Vcore(r) =





−Z
r for r ≤ r1,

3∑

n=0

bnrn for r1 < r ≤ rc,

h for rc < r,

(1)

where b0, b1, b2, and b3 are determined so that the values and the derivatives are continuous at
both r1 and rc. Considering that there are relations, rc=radial.cutoff.pao, r1=rc−rising.edge, and
h=height.of.wall, we find that the tunneling of wave function for the confinement wall becomes small
as height.of.wall increases. Also, it is possible to control the shape of the rising edge around the wall
by changing rising.edge. If you use a huge value for height.of.wall, then you might meet a case that
the calculation is not completed normally, since the computational instability appears often. In such
a case, the numerical instability may be avoided by enlarging the keywords, rising.edge and num.grid.
As for the keyword, rising.edge, please refer the section, Input file. The file, *.pao, created here can
be an input file of the program package, OpenMX.

26

0 1 2 3 4 5

−4.0

−2.0

0.0

2.0

4.0

−1.0

0.0

1.0

r (a.u.)

P
se

ud
o

po
te

nt
ia

l (
H

ar
tr

ee
)

R
adial W

ave F
unction

node=0node=1
node=2

node=3

Figure 5: Confinement potential and radial parts of pseudo-atomic orbitals of a carbon atoms

9 Virtual atom with fractional nuclear charge

It is possible to generate pseudopotentials and basis functions for a virtual atom with fractional nuclear
charge. The relevant keywords in ADPACK are given by

AtomSpecies 6.2

total.electron 6.2

valence.electron 4.2

<occupied.electrons

1 2.0

2 2.0 2.2

occupied.electrons>

The above example is for a virtual atom on the way of carbon and nitrogen atoms. By just controlling
the above keywords, you can easily generate pseudopotentials and basis functions for virtual atoms.
When you use those in OpenMX as input data, no specification by keywords is required. Please make
sure that only OpenMX Ver. 3.4 or later accepts the pseudopotentials and the basis functions for the
virtual atoms. Also, it is noted that basis functions for the pseudopotential of the virtual atom must
be generated for the virtual atom with the same fractional nuclear charge, since the atomic charge
density stored in *.pao is used to make the neutral atom potential in OpenMX.

27

10 Finite element method (FEM) calculation

A highly accurate finite element method (FEM) [20] is available for all electron calculations within
LDA by Vosko, Wilk, and Nusair [2] and the Hartree-Fock scheme. In the calculations, spherical charge
distribution and spherical potential are assumed for the Schrödinger equation. The FEM calculation
is not supported for the Dirac equation. The following keywords are especially relevant for the FEM
calculation:

calc.type
ALLFEM (FEMLDA) and FEMHF are available for the all electron LDA and HF calculations using
the finite element method (FEM) [11], respectively. Note that due to a technical reason during
development, two specifications, ALLFEM and FEMLDA are equivalent to each other.

grid.xmax
In the FEM calculation, the grid is generated at regular intervals on a coordinate x, where the relation
between the radial coordinate r and x is given by r = x2. The keyword, grid.xmax, specifies the upper
bound of x in this case. Note that the definition of x is different from the conventional calculations in
ADPACK. The lower bound of x is always set to zero.

The roles of the other keywords are same as in the conventional calculations. Also, the database
for all electron calculation performed by the FEM scheme can be found at http://www.openmx-
square.org/miscellaneous.html. The database provides calculation results and input files used for the
calculations. In the database, it is estimated based on the virial theorem [21] that the absolute error
in the total energy is less than nano-Hartree and micro-Hartree for the LDA and HF calculations of
all elements in the periodic table, respectively.

28

11 Output files

The list of output files is shown below. The details of each file are described in each section (Test
calculation, Generation of pseudopotential, and Generation of pseudo-atomic orbitals).

calc.type=ALL

C0.alog input file and results of SCF calculations

C0.ao radial wave functions in all electrons SCF calculations

C0.aden electron density of all electrons.

calc.type=VPS

C0.nsvps non-separable pseudopotentials

C0.vps input file, results of the SCF calculation, and pseudopotentials

in a KB separable form, and partial core density PCC

C0.vpao radial parts of pseudo-atomic orbitals for pseudopotentials

C0.vden valence electron density, the total electron density,

core electron density,

modified core electron density for PCC

C0.loc local part of pseudopotentials

C0.ld0 logarithmic derivatives of wave functions(l=0).

C0.ld1 logarithmic derivatives of wave functions(l=1).

calc.type=PAO

C0.pao radial parts of pseudo-atomic orbitals

under a confinement potential

In these output files, two files, C0.vps and C0.pao, could be the input files for OpenMX. When these
two files are used in OpenMX, please copy C0.vps to directory, openmx*.*/DFT DATA**/VPS, and
copy C0.pao to directory, openmx*.*/DFT DATA**/PAO, respectively.

12 Templates of the input files

There are templates of the input files of several atoms, which can be used for your purpose. The
directories, ’work’, ’work FEMLDA’, ’work FEMHF’ contain those for conventional, FEMLDA, and
FEMHF calculations, respectively.

13 Database of optimized VPS and PAO

A database (Ver. 2011) for the optimized pseudopotentials (VPS) and pseudo-atomic orbitals (PAO)
is provided in the OpenMX web site. These data can be used for OpenMX calculations as it is.

29

14 Others

Program

The program package is written in the C language, including one makefile

makefile,

five header files

adpack.h FEMHF_ERI.h FEMHF_JKLM.h Inputtools.h mimic_omp.h

and 65 routines

addfunc.c FEMHF_JKLM.c Inputtools.c Restart.c

adpack.c FEMLDA_All_Electron.c Log_DeriF.c Set_Init.c

All_Electron.c Find_LESP.c Make_EDPP2.c Simple_Mixing.c

All_ElectronFEM.c Frho_V.c Make_EDPP3.c TM.c

All_ElectronFEM_T.c Gauss_Legendre.c Make_EDPP4.c Total_Energy.c

BHS.c Gauss_LEQ.c Make_EDPP.c VNLF.c

Calc_Vlocal.c Generate_VNL.c MBK.c VP.c

Core.c ghost.c MBK_Hessian.c XC4atom_PBE.c

Density.c GR_Pulay.c MBK_Ozaki.c XC_CA.c

Density_PCC.c GVPS1.c mimic_omp.c XC_EX.c

Density_V.c GVPS2.c MPAO_RadialF.c XC_PBE.c

DMF_Func.c Hamming_I.c MR.c XC_PW91C.c

Empty_VPS.c Hamming_O.c Multiple_PAO.c XC_VWN.c

E_NL.c Hartree.c Output.c XC_Xa.c

FEM_All_Electron.c HokanF.c PAO_RadialF.c

FEMHF_All_Electron.c Initial_Density.c QuickSort.c

FEMHF_ERI.c Init_VPS.c readfile.c

Copyright of the program package

The distribution of this program package follows the practice of the GNU General Public License [23].
Moreover, the author, Taisuke Ozaki, possesses the copyright of the original version of this program
package. We cannot offer any guarantees in your use of this program package. However, when you
report some program bugs, we will cooperate as much as possible together with you to remove the
problems.

Contributors

T.Ozaki (JAIST),
H.Kino (NIMS),
H. Kawai (Kanazawa Univ.),
M. Toyoda (JAIST).

30

References

[1] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 45, 566 (1980); J. P. Perdew and A. Zunger,
Phys. Rev. B 23, 5048 (1981).

[2] S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980); S.H. Vosko and L. Wilk,
Phys. Rev. B 22, 3812 (1980).

[3] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[4] N. Troullier and J. L. Martine, Phys. Rev. B 43, 1993 (1991).

[5] G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B 26, 4199 (1982).

[6] I. Morrison, D.M. Bylander, and L. Kleinman Phys. Rev. B 47, 6728 (1993).

[7] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

[8] P. E. Blochl, Phys. Rev. B 41, 5414 (1990).

[9] D. R. Hamann, Phys. Rev. B 40, 2980 (1989).

[10] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

[11] T. Ozaki and M. Toyoda, Comp. Phys. Comm. 182, 1245 (2011).

[12] D. R. Bowler and M. J. Gillan, Chem. Phys. Lett. 325, 475 (2000).

[13] P.Pulay, Chem. Phys. Lett. 73, 393 (1980); G. Kresse and J. Furthmeuller, Phys. Rev. B. 54,
11169 (1996).

[14] S. G. Louie, S. Froyen and M. L. Cohen, Phys. Rev. B 26, 1738 (1982)

[15] T. Ozaki, Phys. Rev. B 67, 155108 (2003); T. Ozaki and H. Kino, Phys. Rev. B 69, 195113
(2004).

[16] X. Gonze et al., Phys. Rev. B 41, 12264 (1990).

[17] D. M. Bylander and L. Kleinman, Phys. Rev. B 41, 907 (1990)

[18] D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977)

[19] A. H. MacDonald and S. H. Vosko, J. Phys. C: Solid State Phys. 12, 2977 (1979).

[20] T. Ozaki and M. Toyoda, Comp. Phys. Comm. 182, 1245 (2011).

[21] J.F.Janak, Phy. Rev. B 9, 3985 (1974).

[22] http://xfree86.cygwin.com/

[23] http://www.gnu.org/home.html

31

