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A numerical method to calculate the four-center electron-repulsion integrals for strictly localized
pseudoatomic orbital basis sets has been developed. Compared to the conventional Gaussian
expansion method, this method has an advantage in the ease of combination with O�N� density
functional calculations. Additional mathematical derivations are also presented including the
analytic derivatives of the integrals with respect to atomic positions and spatial damping of the
Coulomb interaction due to the screening effect. In the numerical test for a simple molecule, the
convergence up to 10−5 hartree in energy is successfully obtained with a feasible cost of
computation. © 2009 American Institute of Physics. �DOI: 10.1063/1.3082269�

I. INTRODUCTION

In ab initio electronic structure calculations based on the
density functional theory �DFT�, the Fock exchange for
Kohn–Sham orbitals has been occasionally used as the “ex-
act” exchange in order to improve the poor description of
exchange energy by the Dirac exchange, which is the stan-
dard functional used in the local density approximation
�LDA� and the generalized gradient corrections �GGA�. In
recent years, various molecular systems have been calculated
by using the hybrid functional methods,1 such as B3LYP2,3

and PBE0,4 where a certain amount of the Fock exchange is
admixed with the LDA/GGA exchange-correlation function-
als. The introduction of the nonlocal Fock exchange signifi-
cantly improves the delocalization error5 in the semilocal
LDA/GGA functional and presents better thermochemical
and structural properties of molecules.

The heavy computational demand to evaluate the Fock
exchange is, however, a serious drawback. The studies for
large molecules and solids are thus very limited. One solu-
tion for this problem is given in the Heyd–Scuseria–
Ernzerhof �HSE� hybrid functional6 where the long tail of the
Coulomb interaction is somewhat artificially damped. The
successful application of the HSE hybrid functional to ex-
tended systems, typified by the surprisingly accurate values
of the band-gap energies of semiconductors,7 implies that the
damping scheme they introduced is not just conducive to
reducing the computational cost, but reasonable as well to
describe the screening of the Coulomb interaction in real
materials.

The Fock exchange consists of the four-center electron
repulsion integrals �ERI� among basis functions. Since the
integration can be performed analytically with the Gaussian-
type orbital �GTO� basis functions, the Gaussian-expansion
method is conventionally used in the evaluation of ERI
where the basis functions are expanded in terms of GTO

basis set.8–10 However, the Gauss transform of a numerically
defined function might require an indirect way such as a
fitting process of the function to analytic functions unlike
that for the Slater-type orbital �STO� functions.8 While, in
our method, ERI is evaluated directly from arbitrarily de-
fined basis functions. Specifically in the O�N� DFT calcula-
tion codes, such as CONQUEST,11

SIESTA,12 and OPENMX,13–15

the strictly localized pseudoatomic orbital �PAO� basis sets
are commonly used since the real space sparsity of the re-
sultant Hamiltonian and overlap matrices enable us to com-
bine the scheme with various O�N� methods and to parallel-
ize the computation by the domain decomposition in real
space. Therefore, toward the implementation of the hybrid
functionals or any other methods which utilizes the Fock
exchange in the O�N� DFT calculations, an effective numeri-
cal method is required to evaluate the Fock exchange for the
nonanalytic PAO basis functions.

In this paper, we present a numerical procedure to cal-
culate the four-center ERI for the numerically defined basis
functions. We briefly review the mathematical derivations in
the next section. Then, based on the formulations, we derive
the analytic derivatives of the integrals with respect to
atomic positions, which are required for the calculation of
the forces on atoms. Our derivation is fully analytic and con-
sistent with the integrals themselves. We also derive the for-
mulation of ERI when the spatial damping of the Coulomb
interaction is introduced as in the HSE hybrid functional.

II. FORMULATION

A. Numerical evaluation of ERI

The essential mathematical analysis described in this
section is provided by Talman.16 The considered wave func-
tions are expressed as the linear combination of the PAO
basis functions and each basis function is a product of a
numerically defined radial function f�r� and an eigenfunction
of angular momentum, i.e., the spherical harmonic function
YL�r̂� for given angular momentum L= �� ,m�,
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��r� = f�r�YL�r̂� . �1�

The Fock exchange for the wave functions is then expressed
as the sum of ERI for the basis functions. In general, ERI for
four basis functions centered at different positions, a1, a2, a3

and a4, is defined as follows:

I4 �� � �1
��r − a1��2�r − a2�

�
1

�r − r��
�3�r� − a3��4

��r� − a4�d3rd3r�. �2�

I4 is also denoted as ��1�2 ��3�4� to make the order of the
basis functions clear. This integral is quite difficult to com-
pute since the integration has to be performed over six-
dimensional space coordinates. To reduce the dimensionality
of the coordinates, one first needs to describe the overlap of
the basis functions, �1 and �2, as a function centered at an
arbitrarily chosen center c, which will be referred to as the
overlap function later, and, similarly, the overlap of �3 and
�4 at another center c�,

F12�r − c� = �1�r − a1��2
��r − a2� , �3�

F34�r − c�� = �3�r − a3��4
��r − a4� . �4�

Then, the integral Eq. �2� becomes

I4 =� � �F12�r − c���
1

�r − r��
F34�r� − c��d3rd3r�. �5�

By using the Fourier transform of the Coulomb interaction
1 /r,

� eik·r

r
d3r =

4�

k2 , �6�

the integral in reciprocal space is expressed as a single-center
integral,

I4 =
1

2�2� 1

k2 �F̃12�k���F̃34�k�eik·Rd3k , �7�

where R�c�−c and F̃ij are the Fourier transformed func-

tions of Eqs. �3� and �4�. Since F̃ij is also expanded in terms
of the spherical harmonic functions,

F̃ij�k� = 4��
L

i�P̃L
ij�k�YL�k̂� , �8�

the angular part of the integral in Eq. �7� can be performed

analytically, where the overlap coefficient, P̃L
ij�k�, is a radial

function of k, which will be discussed later on. Finally, the
integral Eq. �2� is broken down to a sum of single-
dimensional integrals as follows:

I4 = 32��
L

�
L�

�
�=��,��

i��−�+�GL��
L QLL�

� �R��Y��R̂���, �9�

QLL�
� �R� � �

0

�

j��kR��P̃L
12�k���P̃L�

34�k�dk , �10�

where GL��
L is the Gaunt coefficients defined by

GL��
L �� �YL�r̂���YL��r̂�Y��r̂�d�r. �11�

The remaining problem is how to calculate the overlap coef-

ficients P̃L
ij in Eq. �8�. In order to calculate them, the trans-

lation of the expansion center of a basis function is consid-
ered based on the investigation by Löwdin17 as follows:

�i�r − a� = �
�

	�
i �r,a�Y��r̂� . �12�

The coefficients 	�
i , often referred to as 	-function, are

given by

	�
i �r,a� = 4��

��

i�i−�+��G���
Li 
���

i �r,a�Y���â� , �13�

with a function of r and a defined by


���
i �r,a� =

2

�
S����j���ka� f̃ i�k�� . �14�

Here, S��� is the �th order spherical Bessel transform �SBT�
and f̃ i�k� is the transformed radial function given by

f̃ i�k� = S��i��f i�r�� � �
0

�

j�i
�kr�f i�r�r2dr . �15�

The overlap functions, Eqs. �3� and �4�, are described in
terms of 	-functions �Eq. �13��:

Fij�r� = �i�r − �ai − c��� j
��r − �a j − c��

= �
L

PL
ij�r,ai − c,a j − c�YL�r̂� , �16�

where

PL
ij�r,ai − c,a j − c� = �

�
�
��

G��L
� 	�

i �r,ai − c��	��
j �r,a j − c���.

�17�

Finally, by transforming Eq. �17�, the overlap coefficients in
reciprocal space are obtained as

P̃L
ij�k� = S����PL

ij�r,ai − c,a j − c�� . �18�

Let us summarize how to compute ERI in the present
approach: The first step is to transform the radial part of the
basis functions by Eq. �15�. Then, for every pair of orbitals,
	-functions are calculated through Eqs. �13� and �14�. From
those 	-functions, the overlap coefficients �Eq. �17�� and the
transformed ones �Eq. �18�� are obtained. Finally, the integral
�Eq. �9�� is calculated by summing up the radial integrals
�Eq. �10��.

B. Fast spherical Bessel transform

In the above approach, the SBT is performed at three
different places, namely, Eqs. �14�, �15�, and �18�. Since the
orders of the transforms are different and high at each step,
this process can be a source of numerical errors as well as a
bottleneck in the computation speed. A careful examination
is therefore required in implementing the numerical method
of SBT.
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In the preceding works by Talman, the fast SBT tech-
nique is used, which is proposed by Siegman18 and Talman.19

In our experience of testing several numerical techniques,
such as the discrete Bessel transform20 and the asymptotic
expansion method,21 we reached the conclusion that the
Siegman–Talman fast SBT method is actually the most stable
and fast for the present approach.22 It, however, still suffers
from oscillating numerical error in high-order transforms.
The error becomes more significant for the PAO basis func-
tions than the analytic basis functions because of their finite
truncation. Fortunately, the oscillating error can be substan-
tially suppressed by applying a simple correction to the fast
SBT method as we describe later in this section.

In the fast SBT method, the radial variables r and k are
changed to their logarithms,

� = ln�r�, � = ln�k� . �19�

Then SBT of a function f�r� with order �,

f̃�k� = S����f�r�� � �
0

�

j��kr�f�r�r2dr , �20�

becomes a convolution-type integral as follows:

f̃�k� = f̃�e�� = e�m−3/2��F�M�,m�t�F�e�m+3/2��f�e���� , �21�

where m=0,1 ,2 , . . . ,� is an arbitrarily chosen parameter and
F is the Fourier transform.

The function M�,m�t� is the Fourier transformed spherical
Bessel function,

M�,m�t� =
1

2�
�

−�

�

e−it�e�3/2−m��j��e��d� , �22�

where the integral can be performed analytically.19 The trans-
form, Eq. �21�, is thus reduced to a couple of consecutive
one-dimensional Fourier transforms, where we can take ad-
vantages of the speed of the fast Fourier transform algorithm.

As mentioned before, the fast SBT method suffers from
the oscillating numerical error in high-order transforms. In
Fig. 1, a typical example of such error is shown, where a
PAO basis function is transformed with the order �=14 and
m=0, and then back transformed with the same order. In the
transformed function �the upper middle panel�, the oscillat-
ing error appears in the small-k region. After the back-and-
forth transform �the upper right-hand panel�, the accumula-
tion of error is observed. Often, the error approaches quickly
to infinity and the computation crashes.

In order to avoid the error, a simple correction is applied.
Since the error appears only in the small-k region, we per-
form the integration of Eq. �20� for some selected k-points
between 0 and k0 by using the straightforward trapezoidal
method, where k0 is smaller than the smallest k-points used
in the final integration Eq. �10� so that the effect of the cor-
rection can be negligible, but the numerical breakdown can
be avoided. By a linear interpolation between the selected
k-points, we obtain another transformed function g̃�k�, in ad-

dition to f̃�k�. Then we replace f̃�k� with g̃�k� for k
k0 as
follows:

f̃corrected�k� = f̃�k���k − k0� + g̃�k���k0 − k� . �23�

This rather crude way of correction actually serves the prac-
tical purpose. The lower panels of Fig. 1 show the example
of the back-and-forth transform of the PAO basis function
with the corrected fast SBT. Here, we use k0=10−2 and the
straightforward integrations are performed only for three se-
lected k-points, which are k0, 10−4, and 0. It is confirmed that
the oscillating error is successfully suppressed.

C. Derivatives

For the calculation of forces acting on atoms, we derive
the derivatives of the integral Eq. �9� with respect to atomic

FIG. 1. Accumulation of numerical error by back-and-
forth transforms with the fast SBT method. The input
function �a� is a PAO orbital of H atom for �=2 and
nnode=4. The transformed function of �a� is plotted in
the panel �b� and the back-transformed of �b� is in panel
�c�. In the lower panels �d�, �e�, and �f�, accumulation of
numerical error by back-and-forth transforms with our
modified fast SBT method is shown, where the error is
substantially suppressed.
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positions. In our derivation, the expansion centers for the
overlap functions are assumed to be given by the following
forms:

c = pa1 + �1 − p�a2, �24�

c� = p�a3 + �1 − p��a4, �25�

where 0� p�p���1. Having in mind that R=c�−c, the de-
rivatives are obtained as

�a1
I4 = 32� �

LL��

i��−�+�GL��
L �− pA + B12� , �26�

�a2
I4 = 32� �

LL��

i��−�+�GL��
L �− �1 − p�A − B12� , �27�

�a3
I4 = 32� �

LL��

i��−�+�GL��
L �p�A + B34� , �28�

�a4
I4 = 32� �

LL��

i��−�+�GL��
L ��1 − p��A − B34� , �29�

where the vectors A, B12, and B34 are defined as

A � AY��R̂�eR + QLL�
� �R�

�	 1

R

�Y��R̂�
��

e� +
1

R sin �

�Y��R̂�
��

e�
 , �30�

A � �
0

�

k	 d

dz
j��z�


z=kR
�P̃L

12�k��*P̃L�
34�k�dk , �31�

B12 � �
0

�

j��kR���a1
P̃L

12�k��*P̃L�
34�k�dk , �32�

B34 � �
0

�

j��kR��P̃L
12�k��*��a3

P̃L�
34�k��dk . �33�

Here, the unit vectors are defined as follows:

eR � �sin � cos �, sin � sin �, cos �� , �34�

e� � �cos � cos �, cos � sin �, − sin �� , �35�

e� � �sin �, cos �, 0� , �36�

where � and � are the spherical coordinate components of
the vector R.

The vector A can be calculated immediately since all the
differentiations in Eqs. �30� and �31� are taken for the ana-
lytic functions. As shown in the Appendix, the differentia-
tions of the overlap functions in Eqs. �32� and �33� can also
be performed completely analytically. Note that the differen-
tiations are taken only for a1 and a3 because the others can
also be obtained via the following sum rule:

�a1
P̃L

12�k� + �a2
P̃L

12�k� = 0, �37�

�a3
P̃L

34�k� + �a4
P̃L

34�k� = 0. �38�

The rule arises due to the assumption of Eqs. �24� and �25�
and this is the reason why we assumed them. There is an-
other sum rule,

�a1
I4 + �a2

I4 + �a3
I4 + �a4

I4 = 0, �39�

which is a more general one arising from the definition of the
integral. It is easily confirmed that the derivatives, Eqs.
�26�–�29�, satisfy the rule.

D. Screening of the Coulomb interaction

We also derive the formulation of ERI when the screen-
ing of Coulomb interaction is introduced. The screening
scheme is assumed to be the same with that used in the HSE
hybrid functional,6

1

r
→

1 − erf��r�
r

, �40�

where erf��r� is the Gauss error function and � is a screen-
ing parameter. The Fourier transform of the screened Cou-
lomb interaction is

� 1 − erf��r�
r

eik·rd3r =
4�

k2 �1 − e−k2/4�2
� . �41�

Therefore, the radial integral �Eq. �10�� becomes

TABLE I. Definition of the integrals in the calculations of ERI for GTO.

Integral Function Radial Angular

�ss �ss� �1, �2, �3, �4 e−r Y0
0=1 /�4�

�ps �sp� �2, �3 e−r Y0
0=1 /�4�

�1 re−r Y1
−1=�3 /8��x− iy� /r

�4 re−r Y1
1=−�3 /8��x+ iy� /r

�dd �dd� �1 r2e−r/2 Y2
2=�15 /32��x2−y2+2ixy� /r2

�2 r2e−r/2 Y2
−1=�15 /8��xz− iyz� /r2

�3 r2e−r/2 Y2
1=−�15 /8��xz+ iyz� /r2

�4 r2e−r/2 Y2
−2=�15 /32��x2−y2−2ixy� /r2

TABLE II. Convergence of the calculations of ERI for GTO basis set with
respect to the cutoff parameter �max.

�max

Integrals
�hartree�

�ss �ss� �ps �sp� �dd �dd�

0 0.007 608 0.002 853 0.000 000
1 0.002 384 0.001 055
2 0.002 512 0.000 305
3 0.002 656
4 �0.001 909
5 �0.001 909
6 �0.001 965
exact 0.007 608 0.002 512 �0.001 966
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QLL�
�,scr�R� =� j��kR��P̃L

12�k��*P̃L�
34�k��1 − e−k2/4�2

�dk .

�42�

Since the screening factor is independent of the atomic po-
sitions, the derivatives are still in the similar forms as Eqs.
�26�–�29�, except, the radial integrals Eqs. �31�–�33� are re-
placed with the screened ones as follows:

Ascr��� � �
0

�

k	 d

dz
j��z�


z=kR
�P̃L

12�k��*P̃L�
34�k�

��1 − e−k2/4�2
�dk , �43�

B12
scr��� � �

0

�

j��kR���a1
P̃L

12�k��*P̃L�
34�k��1 − e−k2/4��dk ,

�44�

B34
scr��� � �

0

�

j��kR��P̃L
12�k��*��a3

P̃L�
34�k��

��1 − e−k2/4�2
�dk . �45�

E. Computation speed

Our motivation is in the application of the Fock ex-
change in large systems such as large molecules and solids.
In those systems, an enormous �infinite for solids� number of
combinations of basis functions have to be considered. For-
tunately for the PAO basis sets, since they are strictly con-
fined in real space, the overlaps are exactly zero whenever
the distance between the basis functions is longer than the
sum of the confinement lengths. On the other hand, however,
any two overlap functions can interact with each other even
if they are separated quite far apart because of the infinitely
long tail of the Coulomb interaction. By using the screening
scheme described in the previous section, it might be justi-
fied to neglect the contribution from the far-separated pairs.
Nevertheless, still a large number of pairs have to be calcu-
lated since the typical value of the screening parameter is
�=0.15a−1 and thus the effective screening length is
�10 Å.7 Therefore, we should consider making the compu-
tation faster for the final integration �Eqs. �9� and �10��. As
already pointed out by Talman, the convergence of the sum-

mation Eq. �9� is very fast so that the cutoff angular momen-
tum �max and the number of k-sampling points Nk can be

decreased. We shall define new parameters �max and N̄k for
Eqs. �9� and �10� in order to distinguish from the original
parameters �max and Nk, which are used in the other parts.
Typically, �max has to be as large as �15 to describe the
overlap functions accurately. While, as shown later, �max=6
is enough to obtain 10−5 hartree accuracy in energy even
when d orbitals are involved. Similarly, Nk is required to be
�1000, while in the final integration, the Gauss–Laguerre
quadrature can be used, which gives good convergence with

N̄k�50.
The location of the expansion centers c has also a sig-

nificant effect on the convergence speed. In general, c is an
orbital-dependent value. Therefore, since 	-functions Eqs.
�13� and �14� depend on c �note that what we actually need is
the terms in the right-hand side of Eq. �17��, one needs to
calculate those coefficients of which the number is equiva-
lent to that of neighboring orbitals. Here, we offer a sugges-
tion that the computation cost may be reduced by choosing c
at the middle of the two orbital centers,

c =
a1 + a2

2
. �46�

In this case, the required number of 	-functions is decreased
by a factor of the number of orbitals per atom, which is
typically �10. Note that Eq. �46� is not the best choice if just
one ERI is considered. In fact, the choice of c considering
the spatial extent of each orbital gives faster convergence in
the final integration.23 Therefore, it becomes a competition
between the convergence speed in performing a single inte-
gral and the required number of 	-functions.

III. COMPUTATION RESULTS

In order to check the convergence properties of our rou-
tine, we first performed calculations of ERI for a GTO basis
set. Three different integrals �ss �ss�, �ps �sp�, and �dd �dd�
are calculated. The definition of the basis functions for the
integrals is listed in Table I. For all the integrals, the orbital
locations are fixed to the corners of a square on the x-y plane
with edge length of 1; a1= �1 /2,1 /2,0�, a2= �1 /2,−1 /2,0�,
a3= �−1 /2,1 /2,0�, and a4= �−1 /2,−1 /2,0�. The cutoff for
the angular momentum is �max=15 and the number of radial
mesh points is N=1024. In the final integration, the Gauss–

TABLE III. Basis functions and atomic positions in the calculations of methane molecule. The STO basis
functions are normalized.

Symbol Atom Orbital

Position

Exponentx y z

1 H 1s 0 0 �2 1.000

2 H 1s 4�2 /3 0 2/3 1.000

3 H 1s −2�2 /3 2�6 /3 2/3 1.000

4 H 1s −2�2 /3 −2�6 /3 2/3 1.000
c C 1s 0 0 0 5.700
x C 2px 0 0 0 1.625
z C 2py 0 0 0 1.625
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Laguerre quadrature is used where the number of k-sampling

points is N̄k=60 and the summation is taken up to a reduced
cutoff �max. In Table II, the calculated values of the integrals
are shown for increasing �max, where they are left blank after
the convergence up to 10−5 hartree is achieved. The exact
values are also shown for comparison, which are obtained by
using the analysis given in literature.9 It is clearly found that
the convergence becomes slower for orbitals with higher an-
gular momentum. Nevertheless, the accurate values for all
the integrals up to 10−5 hartree are obtained with �max=6.

As a more realistic example, we performed calculations
of ERI of a methane molecule for a STO basis set. The basis
functions and the atomic positions are summarized in Table
III. Our results and the comparison values calculated by us-
ing the Gaussian expansion method9 are shown in Table IV.
For all the integrals considered, ours and the comparison
values agree with each other up to 10−5 hartree. The differ-
ence from the comparison values is large for �c1 �c2� and
�cc �12� because the C 1s inner-shell orbital is involved. In
general, the small spatial extent of such inner-shell orbitals
makes the convergence slower. This, however, would not
have to be considered so seriously in the actual calculations
if the contributions of the inner-shell electrons are included
in the pseudopotentials.

Calculations of ERI for a PAO basis set are performed
for the methane structure. The PAO data are taken from those

used in the OPENMX DFT calculation package.24 The ground
state orbitals generated by the confinement scheme13 with the
radius of 5.0 bohr are used as the PAO basis functions for
both the hydrogen and carbon atoms. The calculated values
are shown in Table V where the parameters �max=15, N

=1024, and N̄k=60 are used. The comparison values are also
calculated by using the present method with the enhanced
parameters �max=20 and N=4096. As well as the analytic
functions such as GTO and STO basis sets, even for the
strictly localized PAO basis set, it is confirmed that the con-
vergence up to 10−5 hartree is obtained with �max=6.

The computation time in our method for calculating a
single integral is 3.0 sec with Intel Xeon processor 3.2 GHz.
This is too expensive compared to the time required in the
conventional Gaussian-expansion method, e.g., one of the
most sophisticated program takes only 0.5–1.3 msec per in-
tegral with Intel Pentium IV processor 3.2 GHz.10 In our
method, most of the time is consumed in the calculation of
the overlap functions. Fortunately, the required number of
pairs is proportional to the number of basis functions due to
the finite truncation of the PAO basis functions, whereas the
effort of the computation of ERIs scales quadratically as the
number of the basis functions increases. In addition to that,
the overlap functions can be reused for the calculations of
ERI with a different pair of them, e.g., the overlap of 1 and 2

TABLE IV. Convergence of the calculations of ERI of methane molecule for the STO basis set. The symbols
1, 2, 3, 4, c, x, and z specify the STO basis functions of H and C atoms. See Table III for details. The
comparison values are taken from Ref. 9.

�max

Integrals
�hartree�

�12 �34� �12 �13� �11 �23� �c1 �34� �c1 �c2� �cc �12� �c1 �x2� �c1 �z2�

0 0.031 420 0.035 743 0.097 301 0.013 109 0.011 258 0.170 321 0.026 924 0.009 519
1 0.031 420 0.035 743 0.097 301 0.013 010 0.011 186 0.170 321 0.020 083 0.006 288
2 0.030 647 0.035 666 0.095 631 0.012 719 0.011 188 0.166 242 0.020 144 0.006 106
3 0.030 647 0.035 666 0.095 631 0.012 723 0.011 188 0.166 242 0.019 819 0.005 914
4 0.030 684 0.035 694 0.095 709 0.012 743 0.011 188 0.166 578 0.019 834 0.005 902
5 0.030 684 0.035 694 0.095 709 0.012 743 0.011 188 0.166 578 0.019 809 0.005 887
6 0.030 681 0.035 694 0.095 703 0.012 741 0.011 188 0.166 531 0.019 811 0.005 887
Comp. 0.030 683 0.035 694 0.095 706 0.012 741 0.011 195 0.166 536 0.019 809 0.005 885

TABLE V. Convergence of the calculations of ERI of methane molecule for the PAO basis set. The symbols and
the atomic positions are the same as in Table III. The comparison values are also calculated by using the present
method with enhanced parameters �see text for details�.

�max

Integrals
�hartree�

�12 �34� �12 �13� �11 �23� �c1 �34� �c1 �c2� �cc �12� �c1 �x2� �c1 �z2�

0 0.031 071 0.035 881 0.096 122 0.070 962 0.158 759 0.141 194 �0.044 336 0.047 671
1 0.031 071 0.035 881 0.096 122 0.071 814 0.161 936 0.141 194 �0.030 393 0.018 107
2 0.030 601 0.035 835 0.095 266 0.071 497 0.162 871 0.140 576 �0.031 044 0.020 152
3 0.030 601 0.035 835 0.095 266 0.071 508 0.162 823 0.140 576 �0.030 911 0.019 802
4 0.030 630 0.035 860 0.095 316 0.071 517 0.162 851 0.140 577 �0.030 915 0.019 825
5 0.030 630 0.035 860 0.095 316 0.071 517 0.162 851 0.140 577 �0.030 906 0.019 826
6 0.030 627 0.035 860 0.095 313 0.071 516 0.162 855 0.140 577 �0.030 905 0.019 828
comp. 0.030 630 0.035 862 0.095 318 0.071 519 0.162 859 0.140 581 �0.030 903 0.019 829
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for �12 �34� can also be used for �12 �56�, etc. Therefore, the
computation efficiency in total can be significantly enhanced
as the system size becomes larger.

IV. SUMMARY

In summary, a numerical method to evaluate ERI for the
PAO basis sets has been developed. Based on the mathemati-
cal analysis by Talman, we derived the analytic derivatives
and a spatial damping scheme for the Coulomb interaction.
We also propose a numerical method for SBT of the strictly
localized PAO basis functions, where the oscillating numeri-
cal error is well suppressed even for the high-order trans-
forms. In the numerical calculations for a simple molecule,
the convergence up to 10−5 hartree in energy has been suc-
cessfully obtained. The present method enables us to utilize
state-of-the-art hybrid functional methods in the O�N� DFT
calculation programs.
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APPENDIX: DERIVATIVES OF OVERLAP FUNCTIONS

The derivatives of the overlap functions in the vectors
�Eqs. �32� and �33�� are given as

�ai
P̃L

ij�k� = �ai
SBT��PL�r,ai − c,a j − c; f i, f j��

= �
���

G��L
� 
�1 − p���u	�

i �r,u��	��
j �r,v�

− p	�
j �r,u���v	��

i �r,v���u=ai−c

v=aj−c
, �A1�

where we use the assumption in Eqs. �24� and �25�. Then, the
derivatives of the 	-functions are

�a	�
��r,a� = 4��

��

i�−�+��G���
L� �	 �

�a

���

� �r,a�
Y���â�er

+
1

a

���

� �r,a�
�

��
Y���â�e�

+
1

a sin �

���

� �r,a�
�

��
Y���â�e�� , �A2�

where the unit vectors are similar to Eqs. �34�–�36�, where �
and � are the spherical coordinate components of a.

We come to the final equation, the derivatives of 

terms,

�

�a

���

i �r,a� =
2

�
SBT�����k	 d

dz
j���z�
�

z=ka
f̃��k�� . �A3�

As derived here, all the components are derived analytically,
without using any numerical differentiation.

In Eq. �30�, there are terms proportional to 1 /R, which
diverge as R approaches zero. In fact, R can be a near-zero
values when, for example, atoms are on a square lattice and
the orbitals �1 and �2 are located at each end of a diagonal of
the square, and �3 and �4 are at each end of the other diag-
onal. To avoid such numerical problem, we impose a lower
limit on R as follows:

R → R̄ � �R2 + �2 exp�− R2/�2� , �A4�

where ��1. The same problem may arise for the derivative
of 	 terms �Eq. �A2��. However, we do not need to consider
the case when a is close to zero. This is because, in such
case, the two orbitals are located on a same atom and thus
the derivative of the overlap function �Eq. �A1�� should al-
ways be zero. Here, we assume that all the orbitals are lo-
cated on the atoms. Note that the derivatives are not taken
with respect to the orbital centers but to the atomic positions.
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