% mpirun np 112 ./openmx Si2_k50x50x50.datAfter finishing the SCF calculation normally, the relevant calculation 'Optical calculation start' starts as shown in the standard output below:
******************* MD= 1 SCF=17 ******************* <Poisson> Poisson's equation using FFT... <Set_Hamiltonian> Hamiltonian matrix for VNA+dVH+Vxc... <Band> Solving the eigenvalue problem... KGrids1: 0.45000 0.35000 0.25000 0.15000 0.05000 0.05000 0.15000 .... KGrids2: 0.45000 0.35000 0.25000 0.15000 0.05000 0.05000 0.15000 .... KGrids3: 0.45000 0.35000 0.25000 0.15000 0.05000 0.05000 0.15000 .... <Band_DFT> Eigen, time=0.028573 <Band_DFT> DM, time=0.024604 1 Si MulP 2.0000 2.0000 sum 4.0000 2 Si MulP 2.0000 2.0000 sum 4.0000 Sum of MulP: up = 4.00000 down = 4.00000 total= 8.00000 ideal(neutral)= 8.00000 <DFT> Total Spin Moment (muB) = 0.000000000000 <DFT> Mixing_weight= 0.020000000000 <DFT> Uele = 2.418066179485 dUele = 0.000000000118 <DFT> NormRD = 0.000000000011 Criterion = 0.000000001000 <Optical calculation start> CDDF.KGrids1: 0.49000 0.47000 0.45000 0.43000 0.41000 0.39000 0.37000 .... CDDF.KGrids2: 0.49000 0.47000 0.45000 0.43000 0.41000 0.39000 0.37000 .... CDDF.KGrids3: 0.49000 0.47000 0.45000 0.43000 0.41000 0.39000 0.37000 .... <Optical calculations end, time=24.31524 (s)> <MD= 1> Force calculation Force calculation #1 Force calculation #2 Force calculation #3 Force calculation #4 Force calculation #5 <MD= 1> Total Energy Force calculation #6 .... ...In this case, it is found from the standard output that the computational time of the relevant calculation is about 24 second. After all the calculations finish, you obtain the following output files relevant to the functionality:
Si2_k50x50x50.cd_re real part of optical conductivity tensor Si2_k50x50x50.cd_im imaginary part of optical conductivity tensor Si2_k50x50x50.df_re real part of dielectric function tensor Si2_k50x50x50.df_im imaginary part of dielectric function tensor Si2_k50x50x50.absorption absorption tensor Si2_k50x50x50.extinction extinction tensor Si2_k50x50x50.transmission transmission tensor Si2_k50x50x50.reflection reflection tensor Si2_k50x50x50.refractive_index refractive index tensor

# conductivity tensor (real part) , unit = Siemens/meter = Mho/meter = 1/(Ohm*meter) # index: energygrid=1, xx=2, xy=3, xz=4, yx=5, yy=6, yz=7, zx=8, zy=9, zz=10, trace=11 #energygrid(eV) xx xy xz yx yy yz zx zy zz (xx+yy+zz)/3 0.00000 16877.3220211 227.5621843 227.5697597 227.5625069 16877.3919038 227.5042335 227.5702078 227.5041190 16877.3911375 16877.3683541 0.00100 16877.3325817 227.5625199 227.5700960 227.5628426 16877.4024628 227.5045682 227.5705442 227.5044537 16877.4016971 16877.3789139 0.00200 16877.3431423 227.5628556 227.5704323 227.5631782 16877.4130218 227.5049028 227.5708805 227.5047883 16877.4122567 16877.3894736 0.00300 16877.3602570 227.5634100 227.5709878 227.5637327 16877.4301338 227.5054554 227.5714360 227.5053409 16877.4293698 16877.4065869 0.00400 16877.3839257 227.5641832 227.5717624 227.5645058 16877.4537989 227.5062261 227.5722106 227.5061116 16877.4530363 16877.4302536 ...... ...
The first column is the photon energy (eV), and from the second columns onward, the components of tensor such as and are stored. In the last column the average value of the diagonal components , , and is given. The other output files also follow the same format as in 'Si2_k50x50x50.cd_re'. By plotting the first column as horizontal axis and the second column as vertical axis of 'Si2_k50x50x50.cd_re', 'Si2_k50x50x50.cd_im', 'Si2_k50x50x50.df_re', and 'Si2_k50x50x50.df_im', one can obtain the optical conductivity and dielectric function as shown in Fig. 80.