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an be expanded by the Taylor series with respe
t to atomi
 
oordinatesfxig around E0 with fx(0)i g as follows:E = E0 + 3NXi ��E�xi�0 (xi � x(0)i ) + 12 3NXi;j  �2E�xi�xj!0 (xi � x(0)i )(xj � x(0)j ) + � � � ; (1)where the derivatives ()0 mean the partial derivatives at fx(0)i g, and N is the number of atoms. Bydi�erentiating Eq. (1) with respe
t to xk, to the se
ond order we have�E�xk = � �E�xk�0 + 3NXi  �2E�xk�xi!0 (xi � x(0)i ): (2)In 
ase the 
oordinates fxig give a lo
al minimum, assuming �E�xk = 0, we have the following matrixequation: 0BB� ( �2E�x1�x1 )0 ( �2E�x1�x2 )0 � � �( �2E�x2�x1 )0 ( �2E�x2�x2 )0 � � �� � � � � � � � � 1CCA0BB� (x1 � x(0)1 )(x2 � x(0)2 )� � � 1CCA = �0BB� � �E�x1�0� �E�x2�0� � � 1CCA : (3)The short notation is H�x = �g; (4)where the matrix 
onsisting of the se
ond derivatives in the left-hand side is 
alled Hessian H. UsingEq. (4), fxig 
an be updated by x(n+1) = x(n) � (H(n))�1g(n): (5)This is the well known Newton method.2 RMM-DIISIn the OpenMX, x(n) and g(n) in Eq. (5) are repla
ed by �x(n) and �g(n) given by the residual mini-mization method in the dire
t inversion of iterative subspa
e (RMM-DIIS) [1, 2℄ as follows:x(n+1) = �x(n) � � (H(n))�1�g(n); (6)1



where � is a tuning parameter for a

eleration of the 
onvergen
e, whi
h 
an be small (large) for alarge (small) �g(n). �g in the RMM-DIIS 
an be found by a linear 
ombination of previous upto p-thgradients g as �g(n) = nXm=n�(p�1) amg(m); (7)where am is found by minimizing h�g(n)j�g(n)i with a 
onstraint Pnm=n�(p�1) am = 1. A

ording toLagrange's multiplier method, F is de�ned byF = h�g(n)j�g(n)i � �(1� nXm am);= Xm;m0 amam0hg(m)jg(m0)i � �(1� nXm am): (8)Considering �F�ak = 0 and �F�� = 0, an optimum set of fag 
an be found by solving the following linearequation: 0BBBB� hg(n�(p�1))jg(n�(p�1))i � � � � � � 1� � � � � � � � � 1� � � � � � hg(n)jg(n)i � � �1 1 � � � 0 1CCCCA0BBBB� a(n�(p�1))a(n�(p�1)+1)�12� 1CCCCA = 0BBBB� 00�1 1CCCCA : (9)An optimum 
hoi
e of �x(n) may be obtained by the set of 
oeÆ
ients fag as�x(n) = nXm=n�(p�1) amx(m): (10)If the Hessian H is approximated by the unity I, Eq. (6) be
omesx(n+1) = �x(n) � � �g(n): (11)This s
heme in the Cartesian 
oordinate has been implemented as 'DIIS' in OpenMX.3 Broyden-Flet
her-Goldfarb-Shanno (BFGS) methodDe�ne �g(n) = g(n) � g(n�1); (12)�x(n) = x(n) � x(n�1): (13)Then, the Broyden-Flet
her-Goldfarb-Shanno (BFGS) method [3℄ gives the following rank-2 updateformula for (H(n))�1:(H(n))�1 = (H(n�1))�1 + h�x(n)j�g(n)i+ h�g(n)j(H(n�1))�1j�g(n)i�h�x(n)j�g(n)i�2 j�x(n)ih�x(n)j�(H(n�1))�1j�g(n)ih�x(n)j+ j�x(n)ih�g(n)j(H(n�1))�1h�x(n)j�g(n)i ; (14)where (H(0))�1 = I. An optimization s
heme using Eq. (6) and the BFGS update formula for theinverse of an approximate Hessian matrix in the Cartesian 
oordinate has been implemented as 'BFGS'in OpenMX. 2



4 Rational fun
tion (RF) methodThe BFGS update by Eq. (14) without any 
are gives an ill-
onditioned approximate inverse of Hessianhaving negative eigenvalues in many 
ases. This leads to the optimization to saddle points rather thanthe optimization to a minimum. The rational fun
tion (RF) method [4℄ 
an avoid the situation inprin
iple. Instead of Eq. (1), we may 
onsider the following expression:E = E0 + 3NXi ��E�xi�0 (xi � x(0)i ) + 12 3NXi;j  �2E�xi�xj!0 (xi � x(0)i )(xj � x(0)j ) + 12� 3NXi (xi � x(0)i )2: (15)Then, the equation 
orresponding to Eq. (4) be
omes(H(n) + �I)�x(n) = �g(n): (16)Therefore, a large � assures that (H(n) + �I) is positive de�nite. If �(n)(= ��) is given by�(n) = hg(n)js(n)i: (17)With Eq. (17), Eq. (16) may be equivalent to H(n) g(n)(g(n))T 0 ! �x(n)1 ! = �(n)  �x(n)1 ! ; (18)where the size of the matrix in the left-hand side is (3N + 1) � (3N + 1), and 
alled the augmentedHessian. The lowest eigenvalue of the eigenvalue problem de�ned by Eq. (18) may give an optimum
hoi
e for �, and the 
orresponding eigenve
tor, the last 
omponent is s
aled to 1, gives an optimizationstep �x(n). In Eq. (18), the approximate Hessian 
an be estimated by the following BFGS formula:H(n) = H(n�1) + j�g(n)ih�g(n)jh�x(n)j�g(n)i � H(n�1)j�x(n)ih�x(n)jH(n�1)h�x(n)jH(n�1)j�x(n)i ; (19)where H(0) = I. An optimization s
heme using Eq. (18) and the BFGS update formula Eq. (19) inthe Cartesian 
oordinate has been implemented as 'RF' in OpenMX.5 Eigenve
tor following (EF) methodBy diagonalizing the approximate Hessian given by Eq. (19), the ill-
onditioned situation 
an belargely redu
ed [5℄. The approximate Hessian is diagonalized asE(n) = (V (n))TH(n)V (n); (20)where E(n) is a diagonal matrix of whi
h diagonal parts are eigenvalues of H(n). If the eigenvalueof the approximate Hessian is smaller than a threshold (0.02 a.u. in OpenMX3.3), the eigenvalue isset to the threshold. The modi�
ation of eigenvalues gives a 
orre
ted matrix E0(n) instead of E(n).Then, we have the inverse of a 
orre
ted Hessian matrix H 0(n) being a positive de�nite as(H 0(n))�1 = V (n)(E0(n))�1(V (n))T : (21)A optimization s
heme using the inverse Eq. (21) in Eq. (6) in the Cartesian 
oordinate has beenimplemented as 'EF' in OpenMX. 3



In addition, there are two important pres
riptions for the stable optimization: (1) If h�x(n)j�g(n)iis positive in the update of Hessian by Eq. (19), it is assured that the updated Hessian is positivede�nite. Therefore, if h�x(n)j�g(n)i is negative, the update should not be performed. (2) Themaximum step should be always monitored, so that an errati
 movement of atomi
 position 
an beavoided.Referen
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