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A method to analyze optical transitions is developed by combining the Kubo-Greenwood formula with the
unfolding method to construct an unfolded electronic band structure with optical transition weights, which allows
us to investigate how optical transitions are perturbed by imperfections such as impurity, vacancy, and structural
distortions. Based on the Kubo-Greenwood formula, we first calculate frequency-dependent optical conductivity
based on the first-principles electronic structure calculations using the linear combinations of atomic orbitals.
Benefiting from the atomic orbital basis sets, the frequency-dependent optical conductivity can be traced back
to their individual components before summations over all of k points and bands. As a result, optical transition
weights of the material can be put on the unfolded electronic band structure to show contributions at different
k points and bands. This method is especially useful to study the effects of broken symmetry in the optical
transitions due to presence of impurities in the materials. As a demonstration, decomposed optical transition
weights of a monolayer Si-doped graphene are shown in the electronic band structure.

DOI: 10.1103/PhysRevB.102.075143

I. INTRODUCTION

The optical properties contain fundamental features of
materials, including optical conductivity, dielectric function,
refractive index, reflectivity, and transmission that can be
measured by experiments [1–9], and have been widely stud-
ied for a variety of compounds, such as solids [10–13],
nanoparticles [14,15], 2D materials [16–20], superconductors
[21–24], and biological tissues [25]. The optical conductiv-
ity and dielectric function of materials are two important
measurable quantities for understanding natural phenomena,
such as current density caused by an alternating electric field,
optical transitions, and energy dissipation [26–30]. To adjust
light absorption capability of materials or to shift absorption
energy range for designing new optical devices, fabricating
different composites of materials by dopants or substitutions
are possible and promising for practical applications [31–35].
Therefore, deeper understanding of the transitions described
by the optical conductivity and dielectric function in impurity
materials is obviously an important issue.

To analyze spectra of optical conductivity and dielectric
function in a material, an electronic band structure is a useful
analysis tool to examine whether transitions between occu-
pied and unoccupied states occur [27]. Since the unfolding
method has been developed, an unfolded electronic band
structure of impurity materials calculated by a supercell can
be constructed to ease the comparison with experimental re-
sults observed by angle-resolved photoemission spectroscopy
[36–38]. However, the conventional presentation of optical
conductivity of impurity materials still cannot show the direct
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correspondence with their band structure, although optical
conductivity based on the Kubo-Greenwood formula [39,40]
has been widely calculated by density functional theory (DFT)
packages [41–46]. Recently, Bianco et al. bridged the relation
between the unfolding method and the Berry curvature with
Wannier functions to investigate the Berry-phase anomalous
Hall conductivity of the Fe-Co alloys [47]. In order to build a
connection between optical transitions and the electronic band
structure, we propose to present optical conductivity with the
unfolding method [37] to put optical transition weights of a
material on the unfolded electronic band structure, which is
called unfolding optical transition method in the following
discussions.

The enhancement of optical conductivity of silicon doped
graphene (SiG) with the tunable band gap in the visible region
has been proposed to improve efficiency of photovoltaic cells
[48,49]. In the experiments, subsequently, the graphene at
a silicon-doping level of 2.7%–4.5% with opening a small
band gap and without affecting the carrier concentration has
been fabricated to enhance the performance of SiG/GaAs
heterostructure solar cells in comparison with graphene/GaAs
[50]. We apply the unfolding optical transition method to
analyze contributions of optical transitions of SiGs in the
unfolded electronic band structure for unveiling the silicon-
doping effect in graphene.

This paper is organized as follows. In Sec. II the Kubo-
Greenwood formula, partial optical transitions in an electronic
band structure, and unfolding optical transition are shown. In
Sec. III an example of a monolayer Si-doped graphene is given
for showing changes of unfolded partial optical conductivity
between Si-doped graphenes. Finally, this research work is
concluded in Sec. IV.
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II. COMPUTATIONAL METHOD

In this section, based on the Kubo-Greenwood formula,
we will discuss the formulation of (1) optical conductivity
and momentum matrix element (MME), (2) partial optical
conductivity, (3) unfolded partial optical conductivity, and
(4) separation of unfolded partial optical conductivity. The
computational order for the optical conductivity calculation
is also discussed for the implementation with localized basis
sets in Sec. II A.

A. Optical conductivity

Based on the Kubo-Greenwood formula [39,40], the
frequency-dependent optical conductivity tensor σαβ (ω) is
calculated by

σαβ (ω)

= −i

Nk�

∑
KJJ ′

fKJ − fKJ ′

εKJ − εKJ ′

〈KJ|P̂α|KJ ′〉〈KJ ′|P̂β |KJ〉
εKJ − εKJ ′ + ω + iη

, (1)

where P̂α is the momentum operator along α direction in
the atomic unit, J and J ′ are indices of states, fKJ is the
Fermi-Dirac distribution at a k-point K and a state J , |KJ〉
is a Kohn-Sham eigenstate, ε is an eigenvalue, η is 0+, Nk

is the total number of k points, and � is the volume of the
unit cell. When the intraband transition or the degenerate state
(εKJ = εKJ ′) occurs, ( fKJ − fKJ ′ )/(εKJ − εKJ ′ ) is treated as
the first derivative of the occupation number with respect to
the energy [37,41,42]. The MME can be evaluated by

〈KJ|P̂α|KJ ′〉
= −i

∑
a

∑
mn

CKJ∗
m CKJ ′

n e−iK·(Ra−R0 )〈φm(r − Ra)|∇α|φn(r)〉,
(2)

where α is along x, y, or z direction, R is a lattice vector, a is
an index of cells, m and n are atomic orbitals’ indices, and C
is LCAO coefficient.

Here we estimate the computational order for the calcula-
tion of optical conductivity by Eq. (1). The orders of opera-
tions for calculating the MME with localized basis sets and
with plane wave basis sets are O(N ) and O(N2), respectively,
with the number of basis functions N [51–53]. After the
calculation of the first MME in Eq. (1), the second MME can
be obtained at the same time by the relation: 〈KJ ′|P̂|KJ〉 =
〈KJ|P̂|KJ ′〉∗. Thus, the order of operations in these two
MMEs with localized basis sets is O(N ). Furthermore, be-
cause k points and two states are summation indices in Eq. (1),
the orders of operations for all of K , J , and J ′ correspond to
O(Nk ), O(N ), and O(N ), respectively. The total computational
complexity in the frequency-dependent optical conductivity
with localized basis sets is O(NkN3) in comparison with plane
wave basis sets O(NkN4). Therefore, the computational effort
can be reduced by utilizing localized basis sets, which is more
suitable for a large-scale system.

B. Partial optical conductivity

Since frequency-dependent optical conductivity σαβ (ω) is
the summation over all of the k points, occupied states, and

unoccupied states, Eq. (1) can be rewritten as

σαβ (ω) = 1

Nk

∑
KJ

σαβ (K, J, ω), (3)

where the partial optical conductivity σαβ (K, J, ω) is given by

σαβ (K, J, ω)

≡ −i

�

∑
J ′

fKJ − fKJ ′

εKJ − εKJ ′

〈KJ|P̂α|KJ ′〉〈KJ ′|P̂β |KJ〉
εKJ − εKJ ′ + ω + iη

. (4)

In Eq. (4), ω is a resonance energy to excite electrons from
a state J to another state J ′. The partial optical conductivity
of a material along k paths in the first Brillouin zone can be
calculated and put on its electronic band structure in a fat band
representation we will show later on.

C. Unfolded partial optical conductivity

To analyze how the optical conductivity σαβ (ω) is changed
by perturbations such as impurities and structural disorders,
we now combine the partial optical conductivity introduced
by Eq. (4) with the unfolding method [37]. The partial optical
conductivity σαβ (K, J, ω) of an impurity material in a super-
cell can be rewritten as

σαβ (K, J, ω) = −i

�
Aαβ

KJ,KJ (ω), (5)

with the spectral function tensor for the supercell defined by

Aαβ
KJ,KJ (ω)

≡ 〈KJ|
∑

J ′

fKJ − fKJ ′

εKJ − εKJ ′

P̂α|KJ ′〉〈KJ ′|P̂β

εKJ − εKJ ′ + ω + iη
|KJ〉. (6)

On the other hand, the partial optical conductivity
σαβ (k, j, ω) of a perfect crystal as a reference system has the
same expression as

σαβ (k, j, ω) = −i

�rc
〈k j|

∑
j′

fk j − fk j′

εk j − εk j′

P̂α|k j′〉〈k j′|P̂β

εk j − εk j′ + ω + iη
|k j〉

= −i

�rc
Aαβ

k j,k j (ω), (7)

where �rc is the volume of the reference cell, |k j〉 is a Kohn-
Sham eigenstate at a k point and a state j in the reference cell,
and Aαβ

k j,k j (ω) is the spectral function tensor in the reference
cell. The uppercase letters in Eq. (4) and the lowercase letters
in Eq. (7) stand for indices in the supercell and in the reference
cell, respectively.

In order to relate partial optical conductivities between the
supercell and the reference cell, the unfolding method [37]
provides a refined approach to unfold the band structure of a
supercell to the Brillouin zone of a reference cell via a spectral
function. The spectral function tensor Aαβ (ω) is given by

Aαβ (ω) =
∑

k j

Aαβ

k j,k j (ω) =
∑

k j

〈k j|Âαβ (ω)|k j〉. (8)
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By inserting closure relations
∑

kmn |km〉S−1
mn (k)〈kn| = Î

into 〈k j|Âαβ (ω)|k j〉, Eq. (8) is rewritten as∑
k j

〈k j|Âαβ (ω)|k j〉

=
∑

k j

∑
mn

∑
n′m′

〈k j|km〉S−1
mn (k)〈kn|Âαβ (ω)|kn′〉

× S−1
n′m′ (k)〈km′|k j〉

=
∑

k

∑
mn

∑
n′m′

S−1
mn (k)〈kn|Âαβ (ω)|kn′〉S−1

n′m′ (k)〈km′|km〉,

(9)

with the definition

|kn〉 = 1√
L

∑
R

eik·R|Rn〉, (10)

where m and n are indices of atomic basis functions in
the reference cell, |Rn〉 is an atomic basis function in the
reference cell, L is the number of unit cells in the Born–
von Kármán boundary condition, and the closure relation∑

k j |k j〉〈k j| = Î is required for deriving the last equation.

Due to
∑

m′ S−1
n′m′ (k)〈km′|km〉 = δn′m(k), Eq. (9) becomes∑

k j

〈k j|Âαβ (ω)|k j〉 =
∑
kmn

S−1
mn (k)〈kn|Âαβ (ω)|km〉. (11)

After inserting two closure relations
∑

KJ |KJ〉〈KJ| = Î in
two adjacent positions of Âαβ (ω) on the right-hand side of
Eq. (11), we have∑

k j

〈k j|Âαβ (ω)|k j〉

=
∑
kmn

∑
KJ

S−1
mn (k)〈kn|KJ〉〈KJ|Âαβ (ω)|KJ〉〈KJ|km〉

=
∑
kmn

∑
KJ

S−1
mn (k)〈kn|KJ〉Aαβ

KJ,KJ (ω)〈KJ|km〉, (12)

where

〈kn|KJ〉 =
∑

N

CKJ
N

∑
rR

e−ik·r
√

l
〈rn|RN〉eiK·R

√
L

(13)

and

〈KJ|km〉 =
∑

M

CKJ∗
M

∑
r′R′

e−iK·R′

√
L

〈R′M|r′m〉eik·r′

√
l

. (14)

For simplicity, the summations in Eq. (12) over k, j, and
J are dropped. Thus, the spectral function tensor Aαβ

k j,k j (ω) in
Eq. (8) is given by

Aαβ

k j,k j (ω) = L

l

∑
KG

δk−G,KW k
KJAαβ

KJ,KJ (ω), (15)

with the unfolded spectral weight

W k
KJ =

∑
MNr

eik·(r−r′(M ))CKJ
N CKJ∗

M S0N,rm(M ), (16)

where L is the number of unit cells in a supercell, l is the
number of unit cells in a reference cell, and r′(M ) and m(M )

refer to lattice vectors and an orbital index in the represen-
tation of the reference cell, respectively. The eigenstate j in
the reference cell corresponds to the unfolded eigenstate J
in the supercell due to

∑
KG δk−G,K . According to Eqs. (15)

and (16), the weight of the spectral function tensor Aαβ
KJ,KJ (ω)

is determined by the phase factor eik·(r−r′ (M )), LCAO coeffi-
cients, and overlap matrix elements in the unfolded spectral
weight W k

KJ . The phase factor governs the spectral weight of
unfolding electronic band structure of a material built with a
supercell. In addition, the overlap matrix elements and LCAO
coefficients in a doped material may cause the reduction or
enhancement of the spectral weight because the presence of
impurity makes symmetry breaking. Note that this unfolded
spectral weight W k

KJ collects contributions over K to obtain
Aαβ

k j,k j (ω) in Eq. (15). Therefore, Aαβ

k j,k j (ω) only includes one
unfolded spectral weight summed over K .

After calculating Aαβ
KJ,KJ (ω) in Eq. (6) and W k

KJ in Eq. (16),

the spectral function tensor Aαβ

k j,k j (ω) for the reference cell
in Eq. (15) can be evaluated. Through Eq. (15), the band
structure of the supercell is unfolded into the Brillouin zone
of the reference cell with the transition weights of partial
optical conductivity. Subsequently, Eqs. (5) and (15) can be
substituted into Eq. (7) to obtain an unfolded partial optical
conductivity σαβ (k, j, ω) represented by the reference cell as
follows:

σαβ (k, j, ω) = −i

�rc
Aαβ

k j,k j (ω)

= −i

�rc

L

l

∑
KG

δk−G,KW k
KJAαβ

KJ,KJ (ω)

=
(

L

l

)2 ∑
KG

δk−G,KW k
KJσαβ (K, J, ω), (17)

where �/�rc = L/l . Finally, after summing over frequencies
ω on the interval [a, b], the unfolded and integrated partial
optical conductivity σαβ (k, j, ω(a : b)) can be expressed as

σαβ (k, j, ω(a : b)) ≡
∫ b

a
σαβ (k, j, ω)dω, (18)

The integrated unfolded partial optical conductivity gathers
contributions of optical transition weights over a selected
frequency range and it can be put on the unfolded electronic
band structure of a material to show optical transitions at states
in a fat band representation. The numerical demonstration of
unfolded and integrated partial optical conductivity is pro-
vided in the Appendix.

D. Separation of unfolded partial optical conductivity

Equation (2) for calculating MME includes two summa-
tions over individual atomic orbitals. After rearranging the
order of the summation, Eq. (2) can be rewritten as

〈KJ|P̂α|KJ ′〉 =
∑
mn

〈KJ|P̂mn
α |KJ ′〉, (19)
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where m and n are orbitals’ indices and the partial MME is
defined as

〈KJ|P̂mn
α |KJ ′〉

≡ −i
∑

a

CKJ∗
m CKJ ′

n e−iK·(Ra−R0 )〈φm(r − Ra)|∇α|φn(r)〉.
(20)

By substituting Eq. (19) back to Eq. (4), the partial optical
conductivity σαβ (K, J, ω) can be reexpressed as

σαβ (K, J, ω) =
∑

mnn′m′
σ mnn′m′

αβ (K, J, ω), (21)

where

σ mnn′m′
αβ (K, J, ω)

≡ −i

�

∑
J ′

fKJ − fKJ ′

εKJ − εKJ ′

〈KJ|P̂mn
α |KJ ′〉〈KJ ′|P̂n′m′

β |KJ〉
εKJ − εKJ ′ + ω + iη

.

(22)

Therefore, orbital transitions of partial optical conductivity
can be evaluated by assigning four individual atomic orbitals.
Similarly, by using the same rearrangement for the order of
the summation in MME, orbital transitions of an unfolded
partial optical conductivity can be obtained by four individual
atomic orbitals. The formula of the unfolded partial optical
conductivity σαβ (k, j, ω) in Eq. (17) can be rewritten as
below to show the summation over all combinations of four
individual atomic orbitals as follows:

σαβ (k, j, ω) =
∑

mnn′m′
σ mnn′m′

αβ (k, j, ω), (23)

where

σ mnn′m′
αβ (k, j, ω) =

(
L

l

)2 ∑
KG

δk−G,KW k
KJσ

mnn′m′
αβ (K, J, ω).

(24)

According to Eq. (24), the individual contribution of orbital
transitions of an unfolded partial optical conductivity can be
separated by four assigned orbitals, such as s, p, d , and f
orbitals.

III. Si-DOPED GRAPHENE

To demonstrate this analysis method, we provide optical
conductivity of a monolayer Si-doped graphene (SiG) as an
example. A monolayer SiG with a band gap and without
a degradation in carrier mobility at a low doping level had

been synthesized for designing optoelectronic devices [50].
The electronic band structure and optical properties of a
monolayer graphene sheet with different silicon-doping levels
had been reported [48,54,55]. In this section we demonstrate
that the transition weights of optical conductivity of SiGs can
be projected to corresponding electronic band structure by
using the unfolding optical transition method proposed in the
paper, and discuss doping effects in a supercell of graphene.

A. Computational details

The geometry optimizations with a regular mesh of 300
Ry in real space are performed by the OpenMX code (v3.8)
based on DFT [53,56–58] with norm-conserving pseudopo-
tentials [59] and optimized pseudoatomic orbitals [60] as
basis sets. The optimized radial functions used are C-s2p2d1,
Si-s2p2d1, and E-s2p2d2 f 1 for carbon, silicon, and ghost
atoms, where the abbreviations of basis functions stand for
(atomic symbol)-(number of radial functions for s, p, d , and f
orbitals), such as C-s2p2d1 represents each carbon atom with
2 s orbitals, 2 p orbitals, and 1 d orbital. The cutoff radii of
optimized radial functions at each C atom, Si atom, and ghost
atom are 6.0, 7.0, and 13.0 bohrs, respectively. The ghost
atom is included for calculating the accurate electronic band
structure of conduction levels and it is placed at the center
of honeycomb ring of graphene and SiGs. The exchange-
correlation energy functional is treated by the generalized gra-
dient approximation with the Perdew-Burke-Ernzerhof form
[61]. An electronic temperature of 300 K is employed to make
electrons occupy eigenstates with the Fermi-Dirac function
in the calculations. For all of optimizations, the force con-
vergence criterion is 10−4 Hartree/bohr and the electronic
self-consistent field criterion is 10−8 Hartree.

The optimized lattice constants of graphenes with differ-
ent Si-doping levels are listed in Table I and corresponding
structures are shown in Fig. 1. By substituting a Si atom with
a C atom in graphene, the structure of graphene will have a
deformation due to the larger Si atomic radius [62] and the
longer Si-C bond length in comparison with the C-C bond
lengths [63]. Therefore, the lattice constant a(= b), Si-C, and
C-C(2) bond length become longer as increasing Si concentra-
tion in graphene. These structural properties are in agreement
with the experimental and calculated results [54,64–67]. In
addition, according to the electronic band structure calcula-
tions as shown in Fig. 2, the band gap of graphene with Si
doping of 0.00%, 3.13%, 12.50%, and 50.00% at K point of
the first Brillouin zone are 0.003, 0.211, 0.744, and 2.468 eV,
respectively. As the Si-doping percentage increases, the band

TABLE I. The optimized lattice constants, bond lengths, and k meshes of graphenes with Si doping of 0.00%, 3.13%, 12.50%, and 50.00%.
a and b refer to lattice constants at x-y plane. The lattice constant c (along z axis) in the models is set to be 18 Å. The C-C(1) and C-C(2) bond
lengths (in Å) stand for the first and second neighboring C-C bonds of the Si atom, respectively.

Si-doping percentage a(=b) C-C(1) C-C(2) Si-C k mesh

Graphene 0.00% 2.467 1.423 1.424 – 24 × 24 × 1
SiG (4 × 4 × 1) 3.13% 2.510 1.409 1.470 1.681 6 × 6 × 1
SiG (2 × 2 × 1) 12.50% 2.644 1.437 1.550 1.692 12 × 12 × 1
SiG (1 × 1 × 1) 50.00% 3.102 – – 1.791 24 × 24 × 1
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FIG. 1. The top view of the optimized monolayer crystal struc-
tures by XCrySDen [70]: (a) graphene, (b) SiG (1 × 1 × 1 supercell),
(c) SiG (2 × 2 × 1 supercell), and (d) SiG (4 × 4 × 1 supercell). The
yellow and cyan balls represent the C atoms and the Si atoms, respec-
tively. Note that ghost atoms located at the center of honeycomb ring
are not shown.

gap of Si-doped graphene becomes larger, which is consistent
with the calculated results [54].

B. Optical conductivity of Si-doped graphenes

Electron currents of the Si-doped graphene with a small
band gap can be induced by applying a voltage to penetrate
through its x-y plane from source to drain [50]. Because of
the fact that electron current density is proportional to optical
conductivity, i.e., J (ω) = σ (ω)E (ω), we analyze frequency-

FIG. 2. The electronic band structures of Si-doped graphenes
(SiGs) with 0.0%, 3.13%, 12.5%, and 50.0% are shown from left
to right in sequence. The Fermi level is set to be 0 eV.

FIG. 3. The optical conductivities Re[σ (ω)] of graphene and
SiGs with doping level 3.13%, 12.5%, and 50.0% are shown in (a).
The partial optical conductivities Re[σxx (ω)] of graphene and SiGs
are shown in (b). The unit of conductivity σ0 is e2/4h̄ [45,71]. The k
meshes of pristine graphene, SiG-(2 × 2 × 1), and SiG-(4 × 4 × 1),
are set to be 400 × 400 × 1, 200 × 200 × 1, and 100 × 100 × 1, re-
spectively, in optical calculations. The resonance energy corresponds
to the energy difference between two states, such as |Eunoccupied −
Eoccupied|.

dependent optical conductivity of SiGs to investigate the Si-
doping effect by comparing it with that in nondoped graphene.

Using the Kubo-Greenwood formula in Eq. (1), the
frequency-dependent optical conductivity of graphene and
SiGs are calculated as shown in Fig. 3(a). The real part of
optical conductivity σxx(ω)[=σyy(ω)] of graphene in xx/yy di-
rection is dominant at low frequencies (below 10 eV) [68,69],
while the zz component only appears above 10 eV. Optical
conductivity of graphene at low frequencies is triggered by a
low applied voltage. Therefore, the zz component of optical
conductivity of graphene materials has little contribution to
electron currents and can be ignored.

In addition, the optical conductivity of graphene with a
Si-doping level about 3.13% [SiG-(4 × 4 × 1)] has a similar
shape in comparison with that of graphene and its peak
at around 4 eV is slightly weaker due to the substitution
of a silicon atom for one of 32 carbon atoms in graphene
in Fig. 3(a). As the Si-doping percentage is getting higher
(more than 12.5%), Si-doped graphenes become more like
insulators gradually. The arrow-pointed peaks in Fig. 3(a)
indicate the band gap becomes larger since the peak of optical
conductivity of SiG-(4 × 4 × 1) shifts from 0.211 to 0.744 eV
in SiG-(2 × 2 × 1) and to 2.468 eV in SiG-(1 × 1 × 1). It im-
plies that optical conductivity of SiGs will decrease gradually
at a low applied voltage as the Si-doping level increases.

Since SiG-(4 × 4 × 1) has a similar optical conductivity
with graphene, we analyze individual contributions of opti-
cal conductivity decomposed to C atoms, Si atom, and/or
relevant orbitals. In Fig. 3(b) the partial optical conductivity
contributed from C atoms is almost the same as total optical
conductivity of SiG-(4 × 4 × 1). As for the partial optical
conductivity decomposed to the Si atom, the contribution of
optical conductivity is quite low and close to zero at ω <

8 eV, which implies that electrons within the Si atom are
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FIG. 4. The real part of unfolded and integrated partial optical
conductivity Re[σ(xx+yy)/2(k, j, ω(0 : 6 eV))] of graphene with dif-
ferent Si-doping levels: (a) 0%, (b) 3.13%, (c) 12.5%, and (d) 50.0%
are put in the corresponding (unfolded) band structure. The unit of
unfolded and integrated partial optical conductivity is set to be the
same as one in Fig. 3. η is 0.05 eV. The unfolded band weights (W )
of SiG-(4 × 4 × 1) and SiG-(2 × 2 × 1) are shown in (e) and (f),
respectively.

not induced to move on the x-y plane. Furthermore, after
optical conductivities of graphene and SiG-(4 × 4 × 1) were
separated from all of pz orbitals as shown in Fig. 3(b) with
gray and magenta lines, one can notice that the shapes of
partial optical conductivity in both cases are similar although
their magnitudes are lower than those decomposed to all
orbitals in C atoms (with the orange line) about 30%.

C. Unfolded and integrated partial optical
conductivity of Si-doped graphenes

Unfolded and integrated partial optical conductivity
σαβ (k, j, ω(a : b)) gives an alternative way to investigate the
transition weights of optical conductivity in an impurity mate-
rial at different k and states after summation over frequencies
ω from a = 0 eV to b = 6 eV by Eq. (18). In order to
show changes of optical transitions between graphene and
SiGs, the unfolded and integrated partial optical conductivity
of graphene with different Si-doping levels are calculated
and shown in Fig. 4(a). First, the major transition weights

FIG. 5. The real part of unfolded and integrated partial optical
conductivity Re[σ(xx+yy)/2(k, j, ω(0 : 6 eV))] of SiG-(4 × 4 × 1) de-
composed to (a) the C atoms, (b) the Si atom, and (c) C atoms’
pz orbitals are put on in the unfolded electronic band structure.
The color-box scale for the unfolded and integrated partial optical
conductivity is set to be the same as one in Fig. 4. η is 0.05 eV.

of partial optical conductivity of graphene in the electronic
band structure at below 6 eV come from K point and M
point. Graphene has a large optical transition at K point at
ω ≈ 0 eV. Also, optical transitions between two states in
graphene take place at a flat band (close to M point) and
it corresponds to the sharp peak of optical conductivity in
graphene at ω ≈ 4 eV in Fig. 3(a). Second, in the case of
SiG-(4 × 4 × 1), the optical transition occurs at K point at
ω ≈ 0.211 eV and at the flat band (ω ≈ 4 eV) as shown
in Fig. 4(b). Graphene and SiG-(4 × 4 × 1) have a similar
pattern of optical transitions. However, due to a low Si-doping
level (3.13%), SiG-(4 × 4 × 1) opens a small band gap and its
states from K point to M point are slightly split. Third, as the
Si-doping level increases over 12.5%, optical conductivities
in SiG-(2 × 2 × 1) and SiG-(1 × 1 × 1) are getting small,
although major optical transitions still occur at the K → M
path in Figs. 4(c) and 4(d). It leads to decrease of the total
optical conductivity of SiG at a high Si-doping percentage.

In order to investigate the Si-doping effect, the unfolded
and integrated partial optical conductivity decomposed to
C atoms and Si atom in the SiG-(4 × 4 × 1) are shown
in Figs. 5(a) and 5(b), respectively. In Fig. 5(a) the transi-
tion weights of optical conductivity of SiG-(4 × 4 × 1) con-
tributed from C atoms are almost the same as those of optical
conductivity of SiG-(4 × 4 × 1) in Fig. 4 (b). In contrast,
in Fig. 5(b) the transition weights of optical conductivity of
SiG-(4 × 4 × 1) contributed from the Si atom are quite low. It
implies that optical transitions of SiG-(4 × 4 × 1) come from
C atoms, not from the Si atom. Therefore, as the Si-doping
level increases, optical conductivity of SiG will become less
and its band gap will be getting larger. The Si-doping effect is
like placing stones into a river to hinder current flow.

Furthermore, unfolded and integrated partial optical con-
ductivity contributed from all of pz orbitals in C atoms in
Fig. 5(c) shows the same pattern of optical transitions as one
from all orbitals in C atoms in Fig. 5(a) and its contribution
lowers about 30%. In addition, the dxz orbitals or dyz orbitals
also involve the π -π∗ transition like the transition from pz

orbitals to pz orbitals, but their contributions are much lower.
The magnitude order of optical transition weights belong-
ing to orbitals in SiG-(4 × 4 × 1) is Wpz−pz > Wpz−dxz/yz >

Wdxz−dxz (=Wdyz−dyz ) > Wdxz−dyz (=Wdyz−dxz ). Consequently, the
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FIG. 6. The (unfolded) integrated partial optical conductivities
Re[σxx+yy(k, j, ω(0 : 20 eV))] of graphene-(1 × 1 × 1) and (2 × 2 ×
1) (with η = 0.05 eV) are shown in the corresponding state of
the electronic band structure. The transition weights of (unfolded)
integrated partial optical conductivities are presented by size of
blue/red circles. The solid line is the band structure of graphene.

most part of electrons can be driven by orbitals with z compo-
nents in C atoms to induce current flow when a low voltage is
applied.

IV. CONCLUSIONS

We have developed an unfolding optical transition method
by combining the Kubo-Greenwood formula with the
unfolding method for the band structure. This unfolding op-
tical transition method enables us to construct an unfolded
electronic band structure of a supercell to a reference cell with
optical transition weights, which provides an analysis tool to
understand how the optical transition is perturbed by struc-
tural imperfections such as impurities and disorders. Although
we developed the unfolding optical transition method for the
LCAO method, it might be straightforward to apply the ideal
for other methods with Wannier functions [36,72,73]. We
have applied the method to optical conductivity of graphene
with different Si-doping levels for studying the silicon-doping
effect. Results show that the C atoms in the SiG-(4 × 4 × 1)
contribute almost all of optical conductivity, whereas the
Si atom has little contribution after unfolded and integrated
partial optical conductivity is decomposed to C atoms and
the Si atom in the SiG-(4 × 4 × 1). It implies that doping Si
atoms can decrease optical conductivity of SiGs and hinder
current flow. Furthermore, after the decomposition to differ-
ent orbitals by unfolding optical transition method, the pz

orbitals of C atoms contribute the largest optical conduc-
tivity from K point to M point in the first Brillouin zone.
The magnitude order of optical transition weights belonging
to orbitals in the SiG-(4 × 4 × 1) is Wpz−pz > Wpz−dxz/yz >

Wdxz−dxz (=Wdyz−dyz ) > Wdxz−dyz (=Wdyz−dxz ). These optical tran-
sitions correspond to π -π∗ transitions. It shows that the or-
bitals with z components in C atoms provide main channels to
make electrons flow from source to drain. Finally, in addition
to the frequency-dependent optical conductivity σ (ω), the
unfolding optical transition method provides an alternative
method to present (k, state)-dependent optical conductivity of
an impurity material in an unfolded electronic band structure
for studying defects, disorders, and doping effects.

ACKNOWLEDGMENTS

This paper is partly based on results obtained from a
project commissioned by the New Energy and Industrial Tech-
nology Development Organization of Japan (NEDO) Grant
No. (P16010). C.C.L. acknowledges partial support from the
Ministry of Science and Technology of Taiwan under Contract
No. MOST 108-2112-M-032-010-MY2.

APPENDIX: NUMERICAL DEMONSTRATION
OF UNFOLDED AND INTEGRATED PARTIAL

OPTICAL CONDUCTIVITY

To confirm that the unfolding optical transition method
is valid, we take the unfolded and integrated partial optical
conductivity Re[σxx+yy(k, j, ω(0 : 20 eV))] of graphene-(2 ×
2 × 1) as an example in comparison with that of graphene-
(1 × 1 × 1). The unfolded and integrated partial optical con-
ductivity of graphene-(2 × 2 × 1) is plotted in the electronic
band structure with open circles whose size is proportional to
the magnitude of the Re[σxx+yy(k, j, ω(0 : 20 eV))] as shown
in Fig. 6. The transition weights of the unfolded and inte-
grated partial optical conductivity of graphene-(2 × 2 × 1) are
almost the same as those of graphene-(1 × 1 × 1), except for
M point. Degenerate states with different transition weights
appear, like M point, after applying the unfolding method. The
sum of transition weights at these degenerate states is equal to
one. The sum of unfolded and integrated partial frequency-
dependent optical conductivities of graphene-(2 × 2 × 1) at
the degenerate energy level is close to that of graphene-
(1 × 1 × 1). Note that the small difference of the unfolded
and integrated partial optical conductivity of graphene-(2 ×
2 × 1) in comparison with the partial optical conductivity of
graphene-(1 × 1 × 1) can be attributed to numerical error in
the different unit cells.
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