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Exchange functional by a range-separated exchange hole
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An approximation to the exchange-hole density is proposed for the evaluation of the exact exchange energy
in electronic structure calculations within the density-functional theory and the Kohn-Sham scheme. Based on
the localized nature of density matrix, the exchange hole is divided into the short-range (SR) and long-range
(LR) parts by using an adequate filter function, where the LR part is deduced by matching of moments with
the exactly calculated SR counterpart, ensuring the correct asymptotic −1/r behavior of the exchange potential.
With this division, the time-consuming integration is truncated at a certain interaction range, largely reducing
the computation cost. The total energies, exchange energies, exchange potentials, and eigenvalues of the highest-
occupied orbitals are calculated for the noble-gas atoms. The close agreement of the results with the exact values
suggests the validity of the approximation.
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I. INTRODUCTION

The density-functional theory [1] in the formulation by
Kohn, Sham, and Levy [2,3] (KS-DFT) is a methodology that is
now recognized as one of the most powerful tools to investigate
the electronic structures of atoms, molecules, and solids. The
high computational efficiency is afforded by transforming the
problem of interacting electrons to a single-body problem
of noninteracting electrons placed in an effective potential.
Therefore, the central problem lies in the way in which
to describe the electronic exchange and correlation by the
effective potential. The local-density approximation (LDA) [2]
describes it as a local potential that is derived from the ex-
change and correlation energy of a uniform electron gas. In the
generalized gradient approximation (GGA) [4–6], a semilocal
potential is used where the electronic density gradient is also
taken into account. The local and semilocal effective potentials
provide a well-balanced compromise between reliability and
feasibility and are, thus, used routinely in the fields of quantum
chemistry, solid-state physics, and biophysics.

The KS-DFT methods with LDA and GGA are, however,
also known for systematic errors such as the significant
underestimation of the band-gap energy of semiconductors
and insulators. The failure of the semilocal approximation is
manifested by the incomplete cancellation of the self-Hartree
energy for each orbital, known as the self-interaction error
(SIE), and the incorrect asymptotic decay of the exchange-
correlation potential. Since it is primarily caused by the
poor description of the exchange interaction, the error is
remedied by using the exact exchange (EXX). There have
been several such approaches, including the hybrid functional
methods [7–10] where a fraction (typically, ∼1/4) of EXX are
admixed with the semilocal exchange and the range-separated
exchange methods [11–14], where either the short-range (SR)
or long-range (LR) part of EXX is combined with the semilocal
counterpart.

The high computation cost required for the evaluation of
EXX is an obvious drawback of the hybrid methods. The
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scaling of the computation in the canonical way is O(N4),
where N is a measure of the system size. Although it can
be reduced to O(N2) in a local-basis implementation [15],
it is still higher than the O(N ) scaling of the semilocal
exchange. A further reduction of the scaling may be attained by
modifying the exchange interaction into the screened exchange
interaction by multiplying an exponentially decaying factor to
the Coulomb operator. Among the above-mentioned methods,
this approach is employed in the screened hybrid functional
method [10] and the screened-exchange LDA method [12,14].
Not only being advantageous in terms of computation time,
this technique is as well found to mimic a part of the
correlation effects by screening out the LR part of exchange
and to improve the results for several quantities in metals
and semiconductors. However, the other groups [13,16–18]
take the opposite approach where the LR part of EXX [or the
exchange-correlation calculated by a post Hartree-Fock (HF)
method] is combined with the SR part of a semilocal exchange
correlation, claiming the importance of the LR asymptotic
tail of the exchange potential. A way to somehow recover
the correct −1/r tail of the screened-exchange potential,
therefore, seems to be advantageous in both the physical and
computational points of view.

In this paper, a scheme to calculate EXX is proposed with
our goal to achieve high computational efficiency comparable
to the computation of the semilocal exchange. Although the
idea of the range-separated exchange is utilized, neither the
SR nor LR part is screened out. The fundamental idea behind
the presented scheme is the general nature of electrons in
materials that the electronic structure is much less sensitive to
a change of an external potential in a far-away region. This
principle is known as nearsightedness [19], forming the basis
of linear-scaling DFT methods [20]. Our ansatz is as follows:
the SR part of the exchange potential possesses most of the
physical significance and, thus, the LR part is easily estimated
by referring the SR counterpart. This idea may enable us
to develop an exchange functional for KS-DFT calculations
where the exact properties of EXX are fulfilled, such as the
cancellation of SIE and the correct asymptotic behavior of the
exchange potential, with O(N ) computation cost. This paper
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is organized as follows. In Sec. II, the detailed formulation of
the scheme is presented. In Sec. III, the computation results for
noble-gas atoms are shown and the manner in which the ansatz
works for atomic systems is discussed. Finally, a summary is
given in Sec. IV.

II. FORMULATION

A. Exchange energy

In KS-DFT, EXX for a spin channel is given, in atomic
units (h̄ = me = e2 = 1), as follows:

EX = −1

2

occ∑
i,j

∫ ∫
ψ∗

i (r)ψ∗
j (r ′)ψj (r)ψi(r ′)

|r − r ′| d3r d3r ′, (1)

where ψi(r) is the ith KS orbital and the summation is taken
over all the occupied orbitals. This is not an explicit functional
of the total charge density ρ(r) but of the first-order reduced
density matrix (1-RDM)

γ (r,r ′) =
occ∑
i

ψ∗
i (r)ψi(r ′). (2)

The exchange energy (1) is also expressible in the following
form:

EX = −1

2

∫ ∫
ρ(r)ρX(r,r ′)

|r − r ′| d3r d3r ′, (3)

where ρX(r,r ′) is the exchange hole density

ρX(r,r ′) = |γ (r,r ′)|2
ρ(r)

. (4)

As in the case of the range-separated exchange methods, the
exchange hole is divided into the SR and LR parts as follows:

ρX(r,r ′) = D(s)ρX(r,r ′) + [1 − D(s)]ρX(r,r ′), (5)

where D(s) is a function of s = |r − r ′|, which is unity at s = 0
and decreases rapidly (exponentially, in general) as s increases,
approaching to zero at s → ∞. Therefore, the first and second
terms of the right-hand side (r.h.s.) in Eq. (5) correspond to
the SR and LR parts of the exchange hole, respectively.

Here, we estimate the LR part by referring the SR part.
A qualitative support to this idea is given by the fact that
the 1-RDM in materials shows rapid decay as γ ∝ exp(−λs),
where the exponent is λ ∝ Eg (small gap) or λ ∝ √

Eg (large
gap) in an insulator with direct gap energy Eg , and λ ∝ T

(low temperature) or λ ∝ √
T (high temperature) in a metal

with electronic temperature T [21,22]. Under this idea, the
LR part is replaced by an analytic function f ({α(r)}; s)
that models the spherically averaged exchange hole where
α(r) = (a(r),b(r), . . . ) is a composite parameter determined
self-consistently at each point of r in space. Note that the
spherical average does not lack mathematical rigor because of
the isotropic nature of the Coulomb interaction. Our exchange
hole is, therefore,

ρ̃X(r,r ′) = D(s)ρX(r,r ′) + [1 − D(s)]f ({α(r)}; s), (6)

which should fulfill the conditions that an exact exchange hole
does, such as the non-negativity and the unit normalization

4π

∫ ∞

0
ρ̃X(r,r ′) d3r ′ = 1. (7)

By substituting Eq. (6) in Eq. (3), the exchange energy is given
as

ẼX = −1

2

∫ ∫ s<smax D(s)

s
ρ(r)ρX(r,r ′)d3r d3r ′

−1

2

∫
ρ(r)ε̃LR

X (r) d3r, (8)

where

ε̃LR
X (r) = 4π

∫ ∞

0

1 − D(s)

s
f ({α(r)}; s)s2 ds. (9)

The decaying function D(s) in Eq. (8) enables one to terminate
the numerical integration at a finite interaction length smax,
which reduces the scaling of the computation.

So far, the scheme is introduced without defining the
decaying function D(s) and the model exchange-hole function
f ({α}; s). In the preceding works, two types of decaying
functions have been used. One is the Thomas-Fermi- (TF-)
type screening function [11]

DTF(s) = exp(−kss), (10)

where ks is the Thomas-Fermi wave vector [23]. This is of the
same shape as Yukawa’s short-range nuclear force. The other
type is called the erf screening [16]:

Derf(s) = erfc(µs) ≡ 2√
π

∫ ∞

µs

e−t2
dt. (11)

As a variation of the erf screening, Toulouse et al. have recently
proposed another function called erfgau interaction [17]. As
the first test, we choose Derf(s) for our decaying function. The
parameter µ determines the range in which the SR and LR parts
are separated. For the model exchange hole, the following form
is used:

fH (a,b,s) = a

16πbs
[(a|b − s| + 1) exp(−a|b − s|)

−(a|b + s| + 1) exp(−a|b + s|)]. (12)

This is analytically derived from the 1s wave function of
a hydrogenic atom and was previously used by Becke and
Roussel [24] to describe the exchange hole in a meta-GGA
method. By construction, the function (12) satisfies the exact
conditions for an exchange hole: it has always a non-negative
value and the norm is unity throughout its domain (a � 0,
b � 0, and s � 0). With the choice, the exchange energy
[Eq. (3)] and the LR energy density [Eq. (9)] have the following
explicit forms:

ẼX = −1

2

∫ ∫ s<smax erfc(µs)

s
ρ(r)ρX(r,r ′) d3r d3r ′

−1

2

∫
ρ(r)ε̃LR

X (a(r),b(r); µ) d3r, (13)

032515-2



EXCHANGE FUNCTIONAL BY A RANGE-SEPARATED . . . PHYSICAL REVIEW A 83, 032515 (2011)

and

ε̃LR
X (x,y; µ)

= µ

{
erf(y)

2y
+ ex2

4y
+ [(x2 − 1 − xy) erfc(x − y) e−xy

− (x2 − 1 + xy) erfc(x + y) exy]

}
, (14)

respectively, where x = a/2µ and y = bµ.

B. Parameter determination

The model parameters a and b are determined by matching
moments of the exchange hole. The nth moment of the exactly
calculated SR part is

Mn(r) ≡ 4π

∫ smax

0
D(s)ρX(r,s)s2−nds, (15)

while that of the corresponding SR part of the model exchange
hole is

µn(a,b) ≡ 4π

∫ ∞

0
D(s)fH (a,b; s)s2−nds. (16)

The conditions appropriate for determination of the parameters
might be

M0(r) = µ0(a,b) (17)

and

M1(r) = µ1(a,b), (18)

which physically mean the normalization of the hole (7) and
the agreement of the SR exchange potential, respectively. The
conditions (17) and (18) must and can be met simultaneously
if the model function has enough flexibility to reproduce the
exact hole. In practice, however, there is no guarantee for
the existence of a and b that satisfies both the requirements
for a given model function. In fact, with Eq. (12), we found
it impossible to find a and b to satisfy both requirements
simultaneously for a certain range of values of M0(r) and
M1(r). Therefore, we search a and b, which give µ1 most
close to M1 instead of the condition (18), while keeping the
other condition (17) satisfied. This search is achieved by using
the Lagrange multipliers. The Lagrangian is

L(a,b) = [�1(a,b)]2 + λ�0(a,b) + P (b), (19)

where �n is the relative difference between the exact moment
and the model moment

�n(a,b) = µn(a,b)/Mn(r) − 1, (20)

and

P (b) =
{
P0(b − bmin)6 b < bmin,

0 b � bmin
(21)

is a penalty function, with an arbitrary constant P0, which is
introduced to prevent b from being too small due to a technical
reason that some of the analytic expressions such as Eq. (14)
become numerically unstable when b approaches to zero. At
the stationary point of L, three conditions are obtained by
differentiating L with respect to a, b, and λ. One of them is,

of course, the condition (17). By erasing λ from the remaining
two conditions, the following condition is obtained:

2�1D + dP

db

∂�0

∂a
= 0, (22)

where

D ≡ ∂�0

∂a

∂�1

∂b
− ∂�1

∂a

∂�0

∂b
. (23)

For a fixed value of a, the model function (12) is a monotonic
function of b. It is thus easy to find b, which satisfies
the requirement (17) for given a by using a simple search
algorithm such as the bisection search. Then, since now b can
be treated as a bound variable, it is also straightforward to find
a, which satisfies the remaining requirement (22). Therefore,
the determination process is a tractable task.

Computation of the moments is also not time consuming
for the following reason: Calculating Mn over the whole
space is computationally similar to taking an integral over
r of Eq. (15), which leads to almost the same expression as
the first term of Eq. (8). Therefore, it can be performed by
applying conventional techniques for calculating EXX, for
example, by calculating the electron-repulsion integrals of the
Gaussian basis set [25] or of a numerically defined localized
basis set [15]. The computation is actually not heavier than the
calculation of the energy (8) itself.

C. Derivatives

The effective potential for the KS equations that corre-
sponds to the exchange energy (13) is obtained by taking
the functional derivatives with respect to variations of the KS
orbitals. The functional derivatives in the present scheme are
well defined except for the model parameters a and b. Since
they have to be optimized numerically, there is no analytic
relation between the parameters and the orbital wave functions.
However, since the conditions (17) and (22) are assumed to
be rigorously satisfied, the conditions must also be stationary
against the variations and, thus, the following equations are
obtained:

δ(�0) = 0, (24)

δ

(
2�1D + dP

db

∂�0

∂a

)
= 0. (25)

They are arranged in the following algebraic representation:

A

(
δa

δb

)
= B

(
δM0

δM1

)
, (26)

where A and B are 2 × 2 matrices with the matrix elements

a00 = ∂�0

∂a
, (27)

a01 = ∂�0

∂b
, (28)

a10 = 2D
∂�1

∂a
+ 2�1

∂D

∂a
+ dP

db

∂2�0

∂a2
, (29)

a11 = 2D
∂�1

∂b
+ 2�1

∂D

∂b
+ dP

db

∂2�0

∂a∂b
+ d2P

db2

∂�0

∂a
, (30)

b00 = (�0 + 1)/M0, (31)

b11 = 2D(2�1 + 1)/M1, (32)
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and b01 = b10 = 0. Since the variation of M0 and M1 is well
defined, the variation of the parameters can be analytically
obtained as follows:(

δa

δb

)
= A−1B

(
δM0

δM1

)
. (33)

Finally, the functional derivative of Eq. (13) is explicitly given
as

δẼX

δψ∗
i (r)

= −
occ∑
j

ψj (r)
∫ s<smax

ṽ(r,s)ψi(r ′)ψ∗
j (r ′) d3r ′

−1

2
ψi(r)

[
ε̃LR
X (r) − αM0(r) − βM1(r)

]
, (34)

where

α ≡ ∂ε̃LR
X

∂a
c00 + ∂ε̃LR

X

∂b
c10, (35)

β ≡ ∂ε̃LR
X

∂a
c01 + ∂ε̃LR

X

∂b
c11, (36)

and cij is the matrix element of C = A−1B. The first term of
the r.h.s. in Eq. (34) is a Hartree-Fock-type nonlocal potential
and, thus, is dealt with by the Fock matrix of the Roothann
equation in terms of a basis set expansion where the Coulomb
operator is replaced with

ṽ(r,s) ≡ D(s)

(
1 + β

s
+ α

)
. (37)

The second term is a semilocal potential and is treated in the
same way as the LDA potential.

The derivatives with respect to the atomic nuclear positions
are often required to calculate the force acting on the atoms
for molecular dynamic simulations. The derivatives are also
analytically obtained by using the relation of Eq. (33).

D. Self-exchange energy

The importance of using EXX lies mainly in the fact that
the self-exchange energy for each KS orbital exactly cancels
the corresponding self-Hartree energy. In this scheme, the
exchange energy for i-th orbital is

〈ψi |V̂X|ψi〉 = −
occ∑
j

〈
ψiψj

∣∣∣∣D(s)

s

∣∣∣∣ ψjψi

〉
− 1

2

∫
ρi(r)ε̃LR

X (r)

+
∫ ∫

d3r d3r ′ D(s)

(
α(r) + β(r)

s

)
γ (r ′,r)

×
[
ρi(r)

ρ(r)
γ (r,r ′) − ψ∗

i (r)ψi(r ′)
]

, (38)

where ρi(r) = ψ∗
i (r)ψi(r) is the orbital charge density. This

includes both the self- and mutual-exchange energy. In the
sum in the first term, the i = j term describes the SR part of
the self-exchange energy while the other i �= j terms are the
SR part of the mutual-exchange energy. In the second term,
the separation of the self-exchange from the mutual-exchange
is not clear. The remaining term is characterized by the factor

ρi(r)

ρ(r)
γ (r,r ′) − ψ∗

i (r)ψi(r ′), (39)

FIG. 1. (Color online) Exchange hole of a neon atom at r =
0.31 a.u. The exact hole function (solid line), the hole in the present
scheme (dashed line) with the parameter µ = 0.1 a.u.−1, and the SR
part of the hole in the present scheme (dotted line) are plotted after
multiplied by s2.

which is the difference between the nonlocal orbital density
and 1-RDM weighted by the orbital density. It vanishes after
taking summation over orbitals. In one-electron systems, such
as a hydrogen atom, the first and second terms are the correct
self-exchange energy and the third term vanishes. For many
electron-systems, although the first term correctly cancels the
SR part of the self-Hartree energy, the second term might
include the LR part of the self-exchange energy and the third
term does not vanish. However, since SIE is significant for a
localized orbital and the difference (39) is small when r and r ′
are close to each other, it is expected that the LR part of the self-
exchange and the difference (39) can be negligible and there-
fore that SIE is nearly completely canceled in this method.

III. CALCULATION

The presented method has been implemented in our
in-house program for electronic structure calculations of
atomic systems based on the real-space finite-element method
[26]. The advantage of the program is that all the integra-
tions are performed analytically except for those for the

FIG. 2. (Color online) Exchange hole of an argon atom at r =
2.48 a.u. The exact hole function (solid line), the hole in the present
scheme (dashed line) with the parameter µ = 0.1 a.u.−1, and the SR
part of the hole in the present scheme (dotted line) are plotted after
multiplied by s2.
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TABLE I. Comparison of the exchange energy EX (in hartree), calculated in various exchange functionals for the noble-gas atoms. The
orbitals are calculated by the HF method.

PWa

Exact LDA GGA [5] µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5

He −1.0258 −0.884 −1.025 −1.0258 −1.0258 −1.0259 −1.0261 −1.0263
Ne −12.1084 −11.03 −12.14 −12.1084 −12.1092 −12.1113 −12.1149 −12.1200
Ar −30.1849 −27.86 −30.15 −30.1851 −30.1869 −30.1915 −30.1990 −30.2083
Kr −93.8560 −88.62 −93.87 −93.8563 −93.8596 −93.8680 −93.8815 −93.8986
Xe −179.0971 −170.6 −179.0 −179.0976 −179.1029 −179.1155 −179.1349 −179.1596
Rn −387.5037 −373.0 −387.5 −387.5045 −387.5117 −387.5290 −387.5559 −387.5913
AAREb (%) 7 0.09 0.0002 0.0004 0.01 0.03 0.05

aThis work with various values of µ (in a.u.−1).
bAverage of absolute relative error.

exchange-correlation energy. For the exchange-correlation
energy, the integration is performed by interpolating the charge
density and the exchange-correlation potential with a set of
finite-element basis functions. Therefore, the numerical error
is determined solely by the interval of the radial grid points.
In the following results, we have confirmed the convergence
of the energy at least to the number of digits shown in the
tables. The deviations from the exact values are thus directly
attributed to the approximation of the presented method.

In Fig. 1, the exchange-hole density of a neon atom is
plotted around a reference point at r = 0.31 a.u. away from
the nucleus. The profile consists of a sharp peak from the
core electrons and a broad feature from the valence electrons.
The exchange hole in this method [Eq. (6)] is plotted by the
dashed line where the separation parameter is chosen to be µ =
0.1 a.u.−1. The dotted line shows the SR part of the hole. It is
clearly shown that the exact hole is localized within s < 2 a.u.
and thus described well almost only by the SR part. In Fig. 2,
the exchange-hole density of an argon atom is plotted around
a reference point at r = 2.48 a.u. away from the nucleus. In
this case, the profile becomes more complicated, reflecting the
atomic shell structure. Although the shape is rather smeared
out [27], the three dominant peaks are still well captured by
this method.

In Table I, the exchange energy of the noble-gas atoms
calculated by the present method with various values of the

parameter µ are summarized and compared with the LDA,
GGA, and exact results. All the energies are calculated with
the exact wave function obtained by the HF calculations. The
average absolute relative errors (AARE) from the exact values
are listed in the bottom line. The values obtained by the present
work (PW) are arranged in columns with different values of
µ. For smaller values of µ, the presented method yields quite
accurate exchange energies with error in order of 1 mili-hartree
or even less than that. The error systematically increases as µ

increases. With µ = 0.5 a.u.−1, the error is almost in the same
order as the GGA results. Note that the GGA exchange energy
is also acceptably accurate because the enhancement factor
was often constructed to reproduce the exact exchange energy
of the noble-gas atoms. The problem of the GGA exchange is
actually in the description of the potential. Since the presented
method can also yield an accurate potential as shown later,
even the method with µ = 0.5 a.u.−1 performs much better
than GGA.

In Table II, the total energy of the noble-gas atoms in the
exchange-only calculations is summarized and compared with
the values calculated with the optimized effective potentials
(OEP) [30,31], as well as the exact value by the HF method.
The OEP method has been used to evaluate EXX in the
KS-DFT method with a local effective potential. Although
it has been shown that the exact local exchange potential does
not exist for the ground state of typical atoms [32], the OEP

TABLE II. Comparison of the total energy E (in hartree), calculated in various exchange-only approximations for the noble-gas atoms. The
one-particle orbitals are self-consistently determined for within each approximation. Two sets of values obtained by the OEP method are shown
for comparison where the OEP equations are solved numerically [28] or by using the Krieger-Li-Iafrate (KLI) approximaion [29], respectively.

PWa

Exact OEP [28] KLI-OEP [29] µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5

He −2.8617 −2.8617 −2.8616 −2.8616 −2.8617 −2.8618 −2.8619
Ne −128.5471 −128.5454 −128.5449 −128.5471 −128.5480 −128.5498 −128.5531 −128.5580
Ar −526.8175 −526.8122 −526.8105 −526.8177 −526.8193 −526.8236 −526.8308 −526.8399
Kr −2752.0549 −2752.0430 −2752.0398 −2752.0552 −2752.0584 −2752.0663 −2752.0793 −2752.0959
Xe −7232.1384 −7232.1211 −7232.1149 −7232.1388 −7232.1437 −7232.1558 −7232.1746 −7232.1985
Rn −21 866.7722 −21 866.7729 −21 866.7797 −21 866.7964 −21 866.8225 −21 866.8568
AAREb (%) 0.0006 0.0009 0.0006 0.0008 0.0007 0.002 0.004

aThis work with various values of µ (in a.u.−1).
bAverage of absolute relative error.

032515-5



MASAYUKI TOYODA AND TAISUKE OZAKI PHYSICAL REVIEW A 83, 032515 (2011)

TABLE III. Comparison of the single-particle eigenvalue of the highest-energy occupied state εHOS (in hartree), calculated in various
approximations for the noble-gas atoms.

PWa

Exact OEP [33] KLI-OEP [29] LDA µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5

He −0.9180 −0.9176 −0.5170 −0.9173 −0.9163 −0.9152 −0.9142 −0.9133
Ne −0.8504 −0.8486 −0.8507 −0.4431 −0.8488 −0.8458 −0.8429 −0.8408 −0.8398
Ar −0.5910 −0.5885 −0.5908 −0.3338 −0.5893 −0.5869 −0.5859 −0.5868 −0.5890
Kr −0.5241 −0.5212 −0.5239 −0.2999 −0.5223 −0.5199 −0.5197 −0.5217 −0.5249
Xe −0.4573 −0.4543 −0.4573 −0.2657 −0.4553 −0.4524 −0.4543 −0.4573 −0.4608
Rn −0.4280 −0.4260 −0.4243 −0.4258 −0.4292 −0.4327
AAREb (%) 0.4 0.03 44 0.3 0.7 0.7 0.5 0.7

aThis work with various values of µ (in a.u.−1).
bAverage of absolute relative error.

methods can give very accurate energies as shown in Table II.
The presented method with smaller values of µ also yields the
total energy close to the exact value, while, for larger values
of µ, it becomes worse than the OEP method. Interestingly,
there seems to be a general tendency that the total energy by
the presented method becomes lower as µ increases, while the
OEP values are always higher than the exact value.

Finally, the question ought to be considered as to whether
the present scheme can successfully reproduce the LR asymp-
totic tail of the exchange potential as expected. In Fig. 3, the
calculated exchange potential of a helium atom is shown. The
potential is defined here as the Coulomb potential generated
by the exchange hole

U (r) = −1

2

∫
ρX(r,r ′)
|r − r ′| d3r ′. (40)

The LDA potential shows the well-known difference from the
exact potential. For example, the asymptotic tail approaches to
zero much faster than the exact −1/r tail. The GGA potential
not only shows no improvement in the tail, but also has an
erroneous divergence at the origin. On the contrary, our method
successfully reproduces the exact exchange potential. Note
that the plotted potential (40) is different from the effective

FIG. 3. (Color online) Exchange potential of a helium atom,
calculated by the exact (solid line), LDA (dashed line), GGA [5]
(dotted line), and the present (thick dashed line) method.

exchange potentials (34) appearing in the KS equations. To see
that the effective potential (34) also has the correct shape, the
single-particle eigenvalue of the highest-occupied state (HOS)
is calculated and summarized in Table III. This serves as a
simple but sensitive test as to whether the exchange potential
has the correct asymptotic tail because it determines the tail of
the HOS charge density. The LDA eigenvalue is much too high
as commonly known, showing that it has a completely wrong
potential at the asymptotic region. The presented method, on
the other hand, can calculate reasonably accurate eigenvalues
with error less than 1%.

We have shown that the presented method can reproduce
accurate exact exchange energy and potential, and also that
the degree of the approximation is systematically controlled
by the separation parameter µ from the level of GGA (µ ∼
0.5 a.u.−1) to the level of OEP (µ ∼< 0.3 a.u.−1) or to even
higher than that. This result would at least partly validate
our ansatz that the LR part of the exchange energy can
be well described by referring the corresponding SR part.
The remaining question is how much the computation load can
be reduced by the presented method with the typical values of
µ. As a rough estimation, the effective range of the screening
of Derf(s) is given as

seff =
∫ ∞

0 r3erfc(µs) ds∫ ∞
0 r2erfc(µs) ds

= 9
√

π

16µ
. (41)

The values are seff = 5.3, 1.8, and 1.1 Å at µ = 0.1, 0.3, and
0.5 a.u.−1, respectively. In actual calculations of the screened
hybrid functional method [10], for example, the exchange
energy contribution in a metallic carbon nanotube is reported
to be converged at around 10 Å when the screening function
Derf(s) with µ = 0.15 a.u.−1 is used. We therefore expect
that, by using the medium value µ = 0.3 a.u.−1, a reasonably
accurate EXX can be calculated where the integrations are
terminated at smax ∼ 5 Å. A quantitative study is in progress
where the presented method is implemented in a conventional
DFT program and applied to molecules and solids.

IV. CONCLUSION

We have presented a scheme to calculate EXX with
O(N ) computational scaling by truncating the numerical
integrations, while the correct −1/r asymptotic tail of the
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exchange potential is well reproduced by an approximation
to the tail of the exchange-hole density. The numerical
calculations for the noble-gas atoms show that the presented
scheme can provide accurate exchange energies. The method
is based on a fundamental idea that the LR behavior of the
interaction should somehow be extrapolated by referring the
information obtained from the corresponding SR part due to
the localized nature of 1-RDM of electrons. This idea should
also be applicable for other methodologies based on 1-RDM,
e.g., the reduced-density-matrix functional method and post
HF methods. The low computational cost is advantageous
especially for the large scale calculations and the present
method can be immediately applied in the framework of the

hybrid functional method or the range-separated EXX method.
It would be, however, more challenging to search for a scheme
with low computational cost based on the same idea for the
correlation functional that is compatible with EXX.
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