| 
|  Re: The conventions for real spherical harmonics in OpenMX ( No.1 ) |  |  Date: 2011/10/12 18:08 Name: T.Ozaki
 
Hi, 
 Sorry for causing your confusion about the convention of
 real spherical harmonics.
 
 In the actual implementation, the convention follows
 the definition in Set_Comp2Real() as:
 
 /* p */
 
 Comp2Real[1][0][0] = Complex( 1.0/sqrt(2.0), 0.0);
 Comp2Real[1][0][1] = Complex( 0.0, 0.0);
 Comp2Real[1][0][2] = Complex(-1.0/sqrt(2.0), 0.0);
 
 Comp2Real[1][1][0] = Complex( 0.0, 1.0/sqrt(2.0));
 Comp2Real[1][1][1] = Complex( 0.0, 0.0);
 Comp2Real[1][1][2] = Complex( 0.0, 1.0/sqrt(2.0));
 
 Comp2Real[1][2][0] = Complex( 0.0, 0.0);
 Comp2Real[1][2][1] = Complex( 1.0, 0.0);
 Comp2Real[1][2][2] = Complex( 0.0, 0.0);
 
 /* d */
 
 Comp2Real[2][0][0] = Complex( 0.0, 0.0);
 Comp2Real[2][0][1] = Complex( 0.0, 0.0);
 Comp2Real[2][0][2] = Complex( 1.0, 0.0);
 Comp2Real[2][0][3] = Complex( 0.0, 0.0);
 Comp2Real[2][0][4] = Complex( 0.0, 0.0);
 
 Comp2Real[2][1][0] = Complex( 1.0/sqrt(2.0), 0.0);
 Comp2Real[2][1][1] = Complex( 0.0, 0.0);
 Comp2Real[2][1][2] = Complex( 0.0, 0.0);
 Comp2Real[2][1][3] = Complex( 0.0, 0.0);
 Comp2Real[2][1][4] = Complex( 1.0/sqrt(2.0), 0.0);
 
 Comp2Real[2][2][0] = Complex( 0.0, 1.0/sqrt(2.0));
 Comp2Real[2][2][1] = Complex( 0.0, 0.0);
 Comp2Real[2][2][2] = Complex( 0.0, 0.0);
 Comp2Real[2][2][3] = Complex( 0.0, 0.0);
 Comp2Real[2][2][4] = Complex( 0.0,-1.0/sqrt(2.0));
 
 Comp2Real[2][3][0] = Complex( 0.0, 0.0);
 Comp2Real[2][3][1] = Complex( 1.0/sqrt(2.0), 0.0);
 Comp2Real[2][3][2] = Complex( 0.0, 0.0);
 Comp2Real[2][3][3] = Complex(-1.0/sqrt(2.0), 0.0);
 Comp2Real[2][3][4] = Complex( 0.0, 0.0);
 
 So, the definition in Eq. (159) in the note is not consistent
 with that in the code.
 
 Regards,
 
 TO
  |  |  Re: The conventions for real spherical harmonics in OpenMX ( No.2 ) |  |  Date: 2011/10/13 16:18 Name: H.
 
Dear Prof. T. Ozaki.
 Given the conventions in Set_Comp2Real(),
 
 is Eq. (158), i.e.,
 Y_{py}=\frac{1}{i\sqrt{2}}(Y_1^{-1}+Y_1^1}
 right?
 
 The convention below in Set_Comp2Real() differs from Eq. (158) in the overall "-" sign.
 
 ...
 Comp2Real[1][1][0] = Complex( 0.0, 1.0/sqrt(2.0));
 Comp2Real[1][1][1] = Complex( 0.0, 0.0);
 Comp2Real[1][1][2] = Complex( 0.0, 1.0/sqrt(2.0));
 ...
 
 
 Also, is the imaginary part of Eq. (76) (spin up-spin down component) right?
 
 I think that Eq. (76) in the technical note (http://www.openmx-square.org/tech_notes/tech2-1_0.pdf) is obtained with the conventions, Eq. (157)-(159), not those in Set_Comp2Real().
 
 Thanks for your kindly reply.
 
 Regards.
 |  |  Re: The conventions for real spherical harmonics in OpenMX ( No.3 ) |  |  Date: 2011/11/11 21:55 Name: T.Ozaki
 
Hi, 
 In Set_Comp2Real(), the unitary matrices for p-states are defined by
 
 Comp2Real[1][0][0] = Complex( 1.0/sqrt(2.0), 0.0);
 Comp2Real[1][0][1] = Complex( 0.0, 0.0);
 Comp2Real[1][0][2] = Complex(-1.0/sqrt(2.0), 0.0);
 
 Comp2Real[1][1][0] = Complex( 0.0, 1.0/sqrt(2.0));
 Comp2Real[1][1][1] = Complex( 0.0, 0.0);
 Comp2Real[1][1][2] = Complex( 0.0, 1.0/sqrt(2.0));
 
 Comp2Real[1][2][0] = Complex( 0.0, 0.0);
 Comp2Real[1][2][1] = Complex( 1.0, 0.0);
 Comp2Real[1][2][2] = Complex( 0.0, 0.0);
 
 They are all opposite compared to Eqs.(157)-(159) in the notes in terms of sign.
 Then, the difference regarding sign does not matter when the matrices F and G
 are calculated, since they are cancelled out.
 
 Regards
 
 TO
 |  |