This thread is locked.Only browsing is available.
Top Page > Browsing
Transmission Through Silicene
Date: 2014/10/31 22:21
Name: Vahid   <riemann.derakhshan@gmail.com>

Dear Openmx User

I want to calculate The Transmission through Silicene ribbon. I've read the

Transmission examples in openmx manual and I've run them successfully, then

I've create a lattice points of silicene ribbon (my own system) and divide it into

leads and central part and calculate it's transmission but I've received wrong

results. I guess I don't know the standard procedure of calculation of transmission.

(such as calculation of best energy cut off and Scf.Kgrid numbers)

You do favor if You give me any guidance about calculation of Transmission.

Herewith I've attached my input data file.

#
# File Name
#

System.CurrrentDirectory ./ # default=./
System.Name negf-silicene-nc
level.of.stdout 1 # default=1 (1-3)
level.of.fileout 1 # default=1 (0-2)
DATA.PATH /openmx3.7/DFT_DATA13


NEGF.filename.hks.l lead-l-silicene-nc.hks
NEGF.filename.hks.r lead-r-silicene-nc.hks

NEGF.Num.Poles 100 # defalut=150
NEGF.scf.Kgrid 1 1 # defalut=1 1

NEGF.bias.voltage 0.0 # default=0.0 (eV)
NEGF.bias.neq.im.energy 0.01 # default=0.01 (eV)
NEGF.bias.neq.energy.step 0.02 # default=0.02 (eV)

Dos.fileout off # on|off, default=off
NEGF.Dos.energyrange -20.0 20.0 1.0e-4 #default=-10.0 10.0 5.0e-3 (eV)
NEGF.Dos.energy.div 4000 # default=200
NEGF.Dos.Kgrid 1 1 # default=1 1

NEGF.tran.energydiv 800 # default=200
NEGF.tran.energyrange -4 4 0.001 # default=-10.0 10.0 5.0e-3 (eV)
NEGF.tran.Kgrid 1 1 # default= 1 1



#
# Definition of Atomic Species
#

Species.Number 2
<Definition.of.Atomic.Species
Si Si7.0-s2p2d1 Si_CA13
H H5.0-s2 H_CA13
Definition.of.Atomic.Species>


#
# Atoms
#

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU


Atoms.Number 12
<Atoms.SpeciesAndCoordinates
1 H 0.005 3.57000 9.54000 0.5 0.5
2 Si 0.005 5.00000 9.54000 2.0 2.0
3 Si 0.005 9.56000 9.54000 2.0 2.0
4 H 0.005 11.0000 9.54000 0.5 0.5
5 Si 0.005 6.14000 11.5000 2.0 2.0
6 Si 0.005 8.42000 11.5000 2.0 2.0
7 H 0.005 3.57000 13.5000 0.5 0.5
8 Si 0.005 5.00000 13.5000 2.0 2.0
9 Si 0.005 9.56000 13.5000 2.0 2.0
10 H 0.005 11.0000 13.5000 0.5 0.5
11 Si 0.005 6.14000 15.5000 2.0 2.0
12 Si 0.005 8.42000 15.5000 2.0 2.0
Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang # Ang|AU

#<Atoms.UnitVectors
# 0.000 0.000 4.88
# 10.000 0.000 0.000
# 0.000 24.000 0.000
#Atoms.UnitVectors>


#
# Lead-Left
#

LeftLeadAtoms.Number 12
<LeftLeadAtoms.SpeciesAndCoordinates # Unit=Ang.
1 H 0.005 3.57000 1.64000 0.5 0.5
2 Si 0.005 5.00000 1.64000 2.0 2.0
3 Si 0.005 9.56000 1.64000 2.0 2.0
4 H 0.005 11.0000 1.64000 0.5 0.5
5 Si 0.005 6.14000 3.61000 2.0 2.0
6 Si 0.005 8.42000 3.61000 2.0 2.0
7 H 0.005 3.57000 5.59000 0.5 0.5
8 Si 0.005 5.00000 5.59000 2.0 2.0
9 Si 0.005 9.56000 5.59000 2.0 2.0
10 H 0.005 11.0000 5.59000 0.5 0.5
11 Si 0.005 6.14000 7.56000 2.0 2.0
12 Si 0.005 8.42000 7.56000 2.0 2.0
LeftLeadAtoms.SpeciesAndCoordinates>


#
# Lead-Right
#


RightLeadAtoms.Number 12
<RightLeadAtoms.SpeciesAndCoordinates # Unit=Ang.
1 H 0.005 3.570000 17.40000 0.5 0.5
2 Si 0.005 5.00000 17.40000 2.0 2.0
3 Si 0.005 9.56000 17.40000 2.0 2.0
4 H 0.005 11.0000 17.40000 0.5 0.5
5 Si 0.005 6.14000 19.40000 2.0 2.0
6 Si 0.005 8.42000 19.40000 2.0 2.0
7 H 0.005 3.57000 21.40000 0.5 0.5
8 Si 0.005 5.00000 21.40000 2.0 2.0
9 Si 0.005 9.56000 21.40000 2.0 2.0
10 H 0.005 11.0000 21.40000 0.5 0.5
11 Si 0.005 6.14000 23.40000 2.0 2.0
12 Si 0.005 8.42000 23.40000 2.0 2.0
RightLeadAtoms.SpeciesAndCoordinates>

#
# SCF or Electronic System
#


scf.XcType LSDA-CA # LDA|LSDA-CA|LSDA-PW|GGA-PBE
scf.SpinPolarization on # On|Off|NC
scf.ElectronicTemperature 300.0 # default=300 (K)
scf.energycutoff 120.0 # default=150 (Ry)
#scf.Ngrid 140 140 100 # about=200 (Ry)
scf.maxIter 2000 # default=40
scf.EigenvalueSolver NEGF # DC|GDC|Cluster|Band
scf.lapack.dste dstevx # dstegr|dstedc|dstevx, default=dstegr
scf.Kgrid 1 1 1 # means n1 x n2 x n3
scf.Mixing.Type rmm-diisk # Simple|Rmm-Diis|Gr-Pulay|Kerker|Rmm-Diisk
scf.Kerker.factor 20.0 # default=1
scf.Init.Mixing.Weight 0.1 # default=0.30
scf.Min.Mixing.Weight 0.04 # default=0.001
scf.Max.Mixing.Weight 0.4 # default=0.40
scf.Mixing.History 60 # default=5
scf.Mixing.StartPulay 20 # default=6
scf.Mixing.EveryPulay 1 # default=6
scf.criterion 1.0e-6 # default=1.0e-6 (Hartree)

#
# MD or Geometry Optimization
#

MD.Type Nomd # Opt|EF|BFGS|RF|DIIS
MD.Opt.DIIS.History 10 # default=3
MD.Opt.StartDIIS 6 # default=5
MD.Opt.EveryDIIS 5 # default=10
MD.maxIter 1 #
MD.Opt.criterion 1.0e-6 # default=1.0e-4 (a.u.)

メンテ
Page: [1]

Re: Transmission Through Silicene ( No.1 )
Date: 2014/11/03 19:12
Name: Artem Pulkin  <artem.pulkin@epfl.ch>

"I've received wrong results. I guess I don't know the standard procedure of calculation of transmission."

I suggest you to read carefully basics of Landauer-Buttiker transport formalism. Then, proceed to non-equilibrium Green's function formalism in DFT. The notes by T. Ozaki are particularly useful if you are going to stick to OpenMX: http://openmx-square.org/tech_notes/NEGF.pdf .

If you want more detailed suggestions please describe the setup you are studying. For example, it is not clear for me whether you put hydrogenated silicene in the leads by intention or not.

Artem
メンテ

Page: [1]