This thread is locked.Only browsing is available.
Top Page > Browsing
scf convergence problem of Pt(111) slab
Date: 2015/02/02 14:13
Name: Wang Yuanqing   <yuanqing.wang@riken.jp>

Dear Ozaki san,

I have encountered some problem of scf convergence on openMX. The calcualtion cannot be converged. My input and output is as follows. Could you give me some advice to improve the calculation? Thank you very much!!

INPUT
///////////////////////////////////////

#
# Definition of Atomic Species
#

Species.Number 1
<Definition.of.Atomic.Species
Pt Pt7.0-s2p2d1 Pt_PBE13
Definition.of.Atomic.Species>

#
# Atoms
#

Atoms.Number 64
Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU
<Atoms.SpeciesAndCoordinates
1 Pt 0.0000000000000000 0.0000000000000000 10.0000000000000018 8.00 8.00
2 Pt 2.7718585822512662 0.0000000000000000 10.0000000000000018 8.00 8.00
3 Pt 5.5437171645025325 0.0000000000000000 10.0000000000000018 8.00 8.00
4 Pt 8.3155757467537992 0.0000000000000000 10.0000000000000018 8.00 8.00
5 Pt 1.3859292911256331 2.4004999479275142 10.0000000000000018 8.00 8.00
6 Pt 4.1577878733768996 2.4004999479275142 10.0000000000000018 8.00 8.00
7 Pt 6.9296464556281654 2.4004999479275142 10.0000000000000018 8.00 8.00
8 Pt 9.7015050378794321 2.4004999479275142 10.0000000000000018 8.00 8.00
9 Pt 0.0000000000000000 4.8009998958550284 10.0000000000000018 8.00 8.00
10 Pt 2.7718585822512662 4.8009998958550284 10.0000000000000018 8.00 8.00
11 Pt 5.5437171645025325 4.8009998958550284 10.0000000000000018 8.00 8.00
12 Pt 8.3155757467537992 4.8009998958550284 10.0000000000000018 8.00 8.00
13 Pt 1.3859292911256331 7.2014998437825426 10.0000000000000018 8.00 8.00
14 Pt 4.1577878733768996 7.2014998437825426 10.0000000000000018 8.00 8.00
15 Pt 6.9296464556281654 7.2014998437825426 10.0000000000000018 8.00 8.00
16 Pt 9.7015050378794321 7.2014998437825426 10.0000000000000018 8.00 8.00 ...

Atoms.SpeciesAndCoordinates>
Atoms.UnitVectors.Unit Ang # Ang|AU
<Atoms.UnitVectors
11.0874343290050650 0.0000000000000000 0.0000000000000000
0.0000000000000000 9.6019997917100568 0.0000000000000000
0.0000000000000000 0.0000000000000000 26.7896391656700033
Atoms.UnitVectors>

#
# SCF or Electronic System
#

scf.XcType GGA-PBE # LDA|LSDA-CA|LSDA-PW|GGA-PBE
scf.SpinPolarization off # On|Off|NC
scf.ElectronicTemperature 300.0 # default=300 (K)
scf.energycutoff 300.0 # default=150 (Ry)
scf.maxIter 100 # default=40
scf.EigenvalueSolver krylov # DC|GDC|Cluster|Band
scf.Kgrid 11 11 11 # means n1 x n2 x n3
scf.ProExpn.VNA on # default=on
scf.Mixing.Type rmm-diis # Simple|Rmm-Diis|Gr-Pulay|Kerker|Rmm-Diisk
scf.Init.Mixing.Weight 0.10 # default=0.30
scf.Min.Mixing.Weight 0.001 # default=0.001
scf.Max.Mixing.Weight 0.300 # default=0.40
scf.Mixing.History 10 # default=5
scf.Mixing.StartPulay 5 # default=6
scf.Mixing.EveryPulay 1 # default=5
scf.criterion 1.0e-9 # default=1.0e-6 (Hartree)

....
orderN.HoppingRanges 6.8 # default=5.0 (Ang)
orderN.NumHoppings 2 # default=2
orderN.KrylovH.order 350
#orderN.KrylovS.order 2048
orderN.Expand.Core on
orderN.Recalc.Buffer on
orderN.Exact.Inverse.S on

#
# MD or Geometry Optimization
#

MD.Type EF # Nomd|Opt|DIIS|NVE|NVT_VS|NVT_NH
MD.Opt.DIIS.History 7 # default=7
MD.Opt.StartDIIS 5 # default=5
MD.maxIter 100 # default=1
MD.TimeStep 1.0 # default=0.5 (fs)
MD.Opt.criterion 1.0e-4 # default=1.0e-4 (Hartree/bohr)
////////////////////////////////////


OUTPUT--*.DFTSCF
//////////////////////////////

SCF history at MD= 1
***********************************************************
***********************************************************

SCF= 1 NormRD= 1.000000000000 Uele= -963.257904197056
SCF= 2 NormRD= 41.155098577125 Uele= -1638.217260970763
SCF= 3 NormRD= 40.788503458973 Uele= -1630.758913811508
SCF= 4 NormRD= 9.594575662564 Uele= -1257.093809047723
SCF= 5 NormRD= 7.503650867026 Uele= -1143.063717859946
SCF= 6 NormRD= 6.612584714806 Uele= -1104.151178266754
SCF= 7 NormRD= 33.156605787473 Uele= -1086.696342158471
SCF= 8 NormRD= 6.723993420433 Uele= -992.907625579865
SCF= 9 NormRD= 18.649684730171 Uele= -1247.625697619897
SCF= 10 NormRD= 16.694363706579 Uele= -1159.364091146199
SCF= 11 NormRD= 9.305585148034 Uele= -1110.470161746304
SCF= 12 NormRD= 9.073240796200 Uele= -1073.273148993122
SCF= 13 NormRD= 8.107440477269 Uele= -1051.315881924459
SCF= 14 NormRD= 5.852275651065 Uele= -1061.781804714741
SCF= 15 NormRD= 5.019180118838 Uele= -1040.680024079982
SCF= 16 NormRD= 5.744531095012 Uele= -1083.088241889220
SCF= 17 NormRD= 4.723378445793 Uele= -1060.379064622736
SCF= 18 NormRD= 5.966614000207 Uele= -1060.171012997372
SCF= 19 NormRD= 17.902796590697 Uele= -933.468069735620
SCF= 20 NormRD= 5.055023757720 Uele= -1046.038431032579
SCF= 21 NormRD= 4.503861383245 Uele= -1052.927236273888
SCF= 22 NormRD= 6.133884969071 Uele= -1076.742236077953
SCF= 23 NormRD= 9.883378309789 Uele= -1064.166100006329
SCF= 24 NormRD= 4.338561889034 Uele= -1036.982056206998
SCF= 25 NormRD= 5.316398786998 Uele= -1051.666073326734
SCF= 26 NormRD= 6.633985927557 Uele= -997.998448851473
SCF= 27 NormRD= 6.205735138328 Uele= -1049.211503738651
SCF= 28 NormRD= 5.280933187620 Uele= -1046.532131902600
SCF= 29 NormRD= 5.460861442374 Uele= -1044.285495672252
SCF= 30 NormRD= 7.564592245481 Uele= -997.188689039885
SCF= 31 NormRD= 7.022180021034 Uele= -1020.048977664562
SCF= 32 NormRD= 7.153100799892 Uele= -1012.556073337466
SCF= 33 NormRD= 37.616195754911 Uele= -1323.784627744772
SCF= 34 NormRD= 26.419988447781 Uele= -1236.848919885779
SCF= 35 NormRD= 25.689872054290 Uele= -1213.779965949278
SCF= 36 NormRD= 25.296222208477 Uele= -1206.524824964104
SCF= 37 NormRD= 49.741258137023 Uele= -1187.829301389238
SCF= 38 NormRD= 56.353909765460 Uele= -1187.621647254594
SCF= 39 NormRD= 66.346720756766 Uele= -1216.466392402671
SCF= 40 NormRD= 57.421487758859 Uele= -1363.721267932057
SCF= 41 NormRD= 70.754105218032 Uele= -1323.587686560728
SCF= 42 NormRD= 56.974076558996 Uele= -1341.767998549139
SCF= 43 NormRD= 358.984945395891 Uele= -4530.644545182557
SCF= 44 NormRD= 379.420804098739 Uele= -3822.432064832648
SCF= 45 NormRD= 384.937112903039 Uele= -4310.883746067720
SCF= 46 NormRD= 22.881849912540 Uele= -1195.875779094319
SCF= 47 NormRD= 509.409414038380 Uele= -36069.410170863470
SCF= 48 NormRD= 505.579312208858 Uele= -37694.868082868430
SCF= 49 NormRD= 502.643034954787 Uele= -38772.374214070791
SCF= 50 NormRD= 510.285582915018 Uele= -38883.539591210661
SCF= 51 NormRD= 515.768865984690 Uele= -39214.173572978165
SCF= 52 NormRD= 515.726237092224 Uele= -39404.926915238371
SCF= 53 NormRD= 531.594258439702 Uele= -48077.763960390243
SCF= 54 NormRD= 531.625323328088 Uele= -48335.668594727307
SCF= 55 NormRD= 531.610017126187 Uele= -48411.630863274033
SCF= 56 NormRD= 531.375734290239 Uele= -49129.986002495229
SCF= 57 NormRD= 829.395121236233 Uele= -520.549964942860
SCF= 58 NormRD= 312.683353506550 Uele= -3675.685998961083
SCF= 59 NormRD= 464.475878215481 Uele= -22810.032419112875
...
SCF history at MD= 2
***********************************************************
***********************************************************

SCF= 1 NormRD= 1.000000000000 Uele= -18802.342629470455
SCF= 2 NormRD= 326.502912437414 Uele= 0.027199699899
SCF= 3 NormRD= 311.071485645146 Uele= 482.478091101578
SCF= 4 NormRD= 307.640980071715 Uele= 468.276534604007
SCF= 5 NormRD= 211.795842068976 Uele= -2252.102208172596
SCF= 6 NormRD= 354.246295331222 Uele= -6108.272014563223
SCF= 7 NormRD= 237.592488497381 Uele= -6.784272094075
SCF= 8 NormRD= 162.268047415927 Uele= -7643.799372650015
SCF= 9 NormRD= 218.351463069675 Uele= -12.624619580310
SCF= 10 NormRD= 127.947695606680 Uele= -15775.201475954302
SCF= 11 NormRD= 140.294811313000 Uele= -13150.663171389395
SCF= 12 NormRD= 140.606847819297 Uele= -12933.123224286257
SCF= 13 NormRD= 140.417776092899 Uele= -13019.160225800904
SCF= 14 NormRD= 140.602900878779 Uele= -12951.460803631846
SCF= 15 NormRD= 140.678020135801 Uele= -12927.460130468829
SCF= 16 NormRD= 150.271972846209 Uele= -10966.411052833868
SCF= 17 NormRD= 391.436582276702 Uele= 2295.970575152466
SCF= 18 NormRD= 162.652548342015 Uele= -8.196830908415
SCF= 19 NormRD= 260.379786334089 Uele= -18421.718434111790
SCF= 20 NormRD= 100.989202720974 Uele= -17163.524619580345
SCF= 21 NormRD= 142.459067732647 Uele= -1206.458382032889
SCF= 22 NormRD= 382.742959223252 Uele= -25803.686630357264
SCF= 23 NormRD= 378.681700856792 Uele= -25229.514621611783
SCF= 24 NormRD= 378.607772230122 Uele= -25285.448572908506
SCF= 25 NormRD= 378.341497832831 Uele= -25318.765931043978
SCF= 26 NormRD= 377.361889731878 Uele= -25417.218572518686
....
////////////////////////////////////////////////////
メンテ
Page: [1]

Re: scf convergence problem of Pt(111) slab ( No.1 )
Date: 2015/02/02 19:41
Name: Artem Pulkin  <artem.pulkin@epfl.ch>

Increase scf.mixing.history, decrease scf.mixing.weights. I would also go for a smaller K-grid to speed up calculations when finding convergence.

Artem
メンテ
Re: scf convergence problem of Pt(111) slab ( No.2 )
Date: 2015/02/02 19:43
Name: Artem Pulkin  <artem.pulkin@epfl.ch>

And, of course, set the z component of your kgrid to 1 since you have vacuum there anyway.
メンテ
Re: scf convergence problem of Pt(111) slab ( No.3 )
Date: 2015/02/03 10:41
Name: Wang Yuanqing  <yuanqing.wang@riken.jp>

Thanks. I will try.
メンテ
Re: scf convergence problem of Pt(111) slab ( No.4 )
Date: 2015/02/03 20:46
Name: Eike Schwier

You may also try changing

scf.EigenvalueSolver krylov

to

scf.EigenvalueSolver band

I tried krylov on my slab (Fe(001)) and while band solver works perfectly well, krylov does not converge.

best,
Eike
メンテ
Re: scf convergence problem of Pt(111) slab ( No.5 )
Date: 2015/02/03 21:11
Name: Wang Yuanqing  <yuanqing.wang@riken.jp>

Dear Eike,

Thanks for your advice!!!

Best,

Yuanqing Wang
メンテ
Re: scf convergence problem of Pt(111) slab ( No.6 )
Date: 2015/02/04 00:14
Name: T. Ozaki

Hi,

> I tried krylov on my slab (Fe(001)) and while band solver works perfectly well,
> krylov does not converge.

This is not a statement applicable to general cases.
In our experiences, the SCF convergence with the Krylov subspace method is almost
the same as that for the conventional diagonalization if the parameters for the Krylov
subspace method are properly selected.

As for Dr. Wang's case, there is no benefit from the O(N) Krylov subspace method
because of the small number of atoms (64 atoms). Therefore, the conventional diagonalization
method should be used because of the system size rather than the issue of SCF convergence.

As for improving the SCF convergence, scf.Kerker.factor should also be controlled when charge
sloshing seriously happens. The default value for your system is found at the beginning of the
standard output, and you can increase it starting from the value to suppress the charge
sloshing.

Regards,

TO
メンテ
Re: scf convergence problem of Pt(111) slab ( No.7 )
Date: 2015/02/09 23:01
Name: Wang Yuanqing  <yuanqing.wang@riken.jp>

Hi, everyone, I have finished the optimization. The output file said normally complete. However, there is one problem that in the last step it shows (in *.md)

time= 54.000 (fs) Energy= nan (Hartree)
Pt nan nan nan nan nan nan
Pt nan nan nan nan nan nan
Pt nan nan nan nan nan nan
Pt nan nan nan nan nan nan
Pt nan nan nan nan nan nan
Pt nan nan nan nan nan nan
Pt nan nan nan nan nan nan

I ***********************************************************
***********************************************************
History of geometry optimization
***********************************************************
***********************************************************

MD_iter SD_scaling |Maximum force| Maximum step Utot
(Hartree/Bohr) (Ang) (Hartree)

1 0.94486299 0.02759150 0.01379575 -5856.91586861
2 0.94486299 0.01606989 0.00803495 -5857.14984447
3 0.94486299 0.01907598 0.00953799 -5856.93657253
4 0.94486299 0.00729197 0.00364599 -5857.21061504
5 0.94486299 0.01615617 0.00854948 -5856.93089749
6 0.94486299 0.02375217 0.03175063 -5857.27171959
7 0.94486299 0.01988136 0.00315597 -5856.84984541
8 0.94486299 0.02875813 0.02146401 -5857.09521834
9 0.94486299 0.01072951 0.00941771 -5856.78896521
10 0.94486299 0.01096619 0.01697957 -5856.78876624
11 0.94486299 0.01402977 0.00118832 -5856.78442288
12 0.94486299 0.01383315 0.03175063 -5856.78479801
13 0.94486299 0.02117774 0.03175063 -5856.77018401
14 0.94486299 0.02934267 0.02816966 -5856.74596006
15 0.94486299 0.03694607 0.03175063 -5856.71572710
16 0.94486299 0.02787128 0.02346278 -5856.74965165
17 0.94486299 0.02280401 0.02127977 -5856.76638343
18 0.94486299 0.01824109 0.00844446 -5856.77590884
19 0.94486299 0.01750925 0.03175063 -5856.77804686
20 0.94486299 0.01212411 0.03175063 -5856.78769485
21 0.94486299 0.01590588 0.02719466 -5856.78315328
22 0.94486299 0.01127205 0.03175063 -5856.79143028
23 0.94486299 0.01063169 0.02375255 -5856.79642091
24 0.94486299 0.01281693 0.03175063 -5856.79884203
25 0.94486299 0.01266900 0.03175063 -5856.80225287
26 0.94486299 0.01086150 0.03175063 -5856.80606466
27 0.94486299 0.00837924 0.03175063 -5856.80951555
28 0.94486299 0.00911700 0.03175063 -5856.81236912
29 0.94486299 0.00814020 0.03175063 -5856.81499534
30 0.94486299 0.00634491 0.02325574 -5856.81765437
31 0.94486299 0.00573265 0.01900838 -5856.81925946
32 0.94486299 0.00457758 0.01320247 -5856.82059333
33 0.94486299 0.00458463 0.02329327 -5856.82151099
34 0.94486299 0.00394223 0.01632725 -5856.82258070
35 0.94486299 0.00294108 0.01040009 -5856.82304907
36 0.94486299 0.00234652 0.01690421 -5856.82333041
37 0.94486299 0.00227785 0.01094532 -5856.82356428
38 0.94486299 0.00158086 0.00256572 -5856.82362277
39 0.94486299 0.00142641 0.00794105 -5856.82366014
40 0.94486299 0.00160206 0.00329423 -5856.82374936
41 0.94486299 0.00103458 0.00363371 -5856.82379305
42 0.94486299 0.00101118 0.00187525 -5856.82380781
43 0.94486299 0.00089659 0.00410220 -5856.82382358
44 0.94486299 0.00090536 0.00422437 -5856.82385138
45 0.94486299 0.00079277 0.00329734 -5856.82386156
46 0.94486299 0.00067582 0.00282583 -5856.82387177
47 0.94486299 0.00064635 0.00258873 -5856.82386955
48 0.94486299 0.00047301 0.00155999 -5856.82388068
49 0.94486299 0.00034814 0.00083058 -5856.82388685
50 0.94486299 0.00033708 0.00102269 -5856.82389209
51 0.94486299 0.00033250 0.00244315 -5856.82389823
52 0.94486299 0.00027979 0.00141702 -5856.82390876
53 0.94486299 0.00034983 0.00149838 -5856.82391768
54 0.94486299 0.00042407 0.00130811 -5856.82393016
55 0.94486299 0.00034016 0.00086016 -5856.82392574
56 0.94486299 0.00031982 0.00114946 -5856.82392631
57 0.94486299 0.00028552 0.00078077 -5856.82392729
58 0.94486299 0.00034575 0.00101126 -5856.82392953
59 0.94486299 0.00035150 0.00215855 -5856.82393137
60 0.94486299 0.00044210 0.00062501 -5856.82394280
61 0.94486299 0.00045145 0.00060282 -5856.82394213
62 0.94486299 0.00045259 0.00062623 -5856.82394293
63 0.94486299 0.00046286 0.00054825 -5856.82394323
64 0.94486299 0.00043714 0.00028397 -5856.82394177
65 0.94486299 0.00044944 0.00058327 -5856.82394195
66 0.94486299 0.00040858 0.00175268 -5856.82394497
67 0.94486299 0.00039595 0.00210916 -5856.82394736
68 0.94486299 0.00036718 0.00181225 -5856.82395054
69 0.94486299 0.00035589 0.00048490 -5856.82394763
70 0.94486299 0.00041868 0.00149762 -5856.82394804
71 0.94486299 0.00033379 0.00078205 -5856.82394898
72 0.94486299 0.00032111 0.00062764 -5856.82394918
73 0.94486299 0.00035179 0.00035633 -5856.82394996
74 0.94486299 0.00031683 0.00055199 -5856.82395128
75 0.94486299 0.00030294 0.00030488 -5856.82395183
76 0.94486299 0.00027244 0.00032820 -5856.82395270
77 0.94486299 0.00027800 0.00078233 -5856.82395281
78 0.94486299 0.00034311 0.00174234 -5856.82395381
79 0.94486299 0.00033426 0.00030745 -5856.82395628
80 0.94486299 0.00031417 0.00036228 -5856.82395808
81 0.94486299 0.00032500 0.00012257 -5856.82395928
82 0.94486299 0.00031693 0.00101867 -5856.82395953
83 0.94486299 0.00035753 0.00095990 -5856.82395630
84 0.94486299 0.00031074 0.00036934 -5856.82395970
85 0.94486299 0.00032070 0.00222151 -5856.82395864
86 0.94486299 0.00034637 0.00124637 -5856.82396337
87 0.94486299 0.00031230 0.00039361 -5856.82396227
88 0.94486299 0.00030502 0.00044654 -5856.82396117
89 0.94486299 0.00030776 0.00017436 -5856.82395976
90 0.94486299 0.00030705 0.00057602 -5856.82396034
91 0.94486299 0.00031326 0.00021038 -5856.82396039
92 0.94486299 0.00032040 0.00025081 -5856.82396122
93 0.94486299 0.00034254 0.00184341 -5856.82396161
94 0.94486299 0.00048906 0.00059169 -5856.82396574
95 0.94486299 0.00054134 0.00056914 -5856.82396782
96 0.94486299 0.00046433 0.00008597 -5856.82396684
97 0.94486299 0.00045067 0.00047094 -5856.82396653
98 0.94486299 0.00040977 0.00029057 -5856.82396587
99 0.94486299 0.00037245 0.00135650 -5856.82396519
100 0.94486299 0.00032333 0.00030617 -5856.82396226
101 0.94486299 0.00033768 0.00060915 -5856.82396286
102 0.94486299 0.00034173 0.00062457 -5856.82396490
103 0.94486299 0.00032409 0.00059394 -5856.82396449
104 0.94486299 0.00035214 0.00000000 -5856.82396668
105 0.94486299 0.00035214 0.00212633 -5856.82396669
106 0.94486299 0.00049741 0.00210756 -5856.82396254
107 0.94486299 0.00054096 0.00257494 -5856.82388909
108 0.94486299 0.00058930 0.00000000 -5856.82390787
109 0.94486299 0.00000000 0.00000000 nan
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


Is this OK?
メンテ
Re: scf convergence problem of Pt(111) slab ( No.8 )
Date: 2015/02/10 21:23
Name: T. Ozaki

Hi,

The calculation seems to be reaching almost convergence, while I don't know what happened
at the last step. To make sure whether the calculation is proper or not, you can restart
your calculation using the structure stored in *.md.

Regards,

TO
メンテ
Re: scf convergence problem of Pt(111) slab ( No.9 )
Date: 2015/02/10 21:27
Name: Wang Yuanqing  <yuanqing.wang@riken.jp>

Thank you very much!

BTW, why does "nan" occur? What is the meaning of this sign?

Best,

Yuanqing Wang
メンテ
Re: scf convergence problem of Pt(111) slab ( No.10 )
Date: 2015/02/10 21:45
Name: T. Ozaki

Hi,

"nan" is an error message in C, and means not a number.
This appears when an improper calculation is performed such as division by zero.

Regards,

TO
メンテ

Page: [1]