This thread is locked.Only browsing is available.
Top Page > Browsing
real space hopping integral
Date: 2015/04/05 17:15
Name: Riemann   <riemann.derakhshan@gmail.com>

Dear openmx Users and developers


When I've run the symGra.dat input file from wf_example. When I want to extract the real space hopping integrals from symGra.HWR files,
I've faced wit this set of hopping integrals that I've attached below. I'm little confused about it.
From the papers I know that real space hopping integral between Carbon atoms in graphene is about 1.6 (eV) .
But all of this hopping parameters are very less than it. You do favor if you give me any guidance about it.

Sincerely Yours

Riemann



Real-space Hamiltonian in Wannier Gauge on Wigner-Seitz supercell.
Number of Wannier Function 8
Number of Wigner-Seitz supercell 73
Lattice vector (in Bohr)
3.99887 -2.30875 0.00000
0.00000 4.61749 0.00000
0.00000 0.00000 37.79452
collinear calculation spinsize 1
Fermi level -0.155255

.
.
.


R ( 0 0 0 ) 1
1 1 -0.090831456926 -0.000000000000
1 2 -0.118878494834 0.000000000000
1 3 -0.118878516842 0.000000000000
1 4 0.000000000022 0.000000000000
1 5 0.116974747585 -0.000000000000
1 6 -0.004314166219 -0.000000000000
1 7 -0.004314174132 0.000000000000
1 8 0.000000000019 0.000000000000
2 1 -0.118878494834 -0.000000000000
2 2 -0.090989070649 0.000000000000
2 3 -0.118960152320 -0.000000000000
2 4 -0.000000000004 0.000000000000
2 5 -0.307814337657 0.000000000000
2 6 -0.093010524796 -0.000000000000
2 7 0.051001898245 -0.000000000000
2 8 -0.000000000019 0.000000000000
3 1 -0.118878516842 -0.000000000000
3 2 -0.118960152320 0.000000000000
3 3 -0.090989103984 0.000000000000
3 4 -0.000000000003 -0.000000000000
3 5 -0.307814334194 -0.000000000000
3 6 0.051001862013 0.000000000000
3 7 -0.093010471766 0.000000000000
3 8 -0.000000000019 0.000000000000
4 1 0.000000000022 -0.000000000000
4 2 -0.000000000004 -0.000000000000
4 3 -0.000000000003 0.000000000000
4 4 -0.137416203899 0.000000000000
4 5 0.000000000072 -0.000000000000
4 6 0.000000000011 -0.000000000000
4 7 0.000000000010 -0.000000000000
4 8 -0.112563484812 0.000000000000
5 1 0.116974747585 0.000000000000
5 2 -0.307814337657 -0.000000000000
5 3 -0.307814334194 0.000000000000
5 4 0.000000000072 0.000000000000
5 5 -0.069476592396 -0.000000000000
5 6 -0.120318181858 -0.000000000000
5 7 -0.120318163082 -0.000000000000
5 8 -0.000000000002 0.000000000000
6 1 -0.004314166219 0.000000000000
6 2 -0.093010524796 0.000000000000
6 3 0.051001862013 -0.000000000000
6 4 0.000000000011 0.000000000000
6 5 -0.120318181858 0.000000000000
6 6 -0.069284723171 0.000000000000
6 7 -0.120227682262 0.000000000000
6 8 -0.000000000008 0.000000000000
7 1 -0.004314174132 -0.000000000000
7 2 0.051001898245 0.000000000000
7 3 -0.093010471766 -0.000000000000
7 4 0.000000000010 0.000000000000
7 5 -0.120318163082 0.000000000000
7 6 -0.120227682262 -0.000000000000
7 7 -0.069284663398 0.000000000000
7 8 -0.000000000007 -0.000000000000
8 1 0.000000000019 -0.000000000000
8 2 -0.000000000019 -0.000000000000
8 3 -0.000000000019 -0.000000000000
8 4 -0.112563484812 -0.000000000000
8 5 -0.000000000002 -0.000000000000
8 6 -0.000000000008 -0.000000000000
8 7 -0.000000000007 0.000000000000
8 8 -0.137416203896 -0.000000000000

.
.
.
メンテ
Page: [1]

Re: real space hopping integral ( No.1 )
Date: 2015/04/06 20:20
Name: T. Ozaki

Hi,

I assumed that your input file is based on 'symGra.dat' in work/wf_example.
In the input file, the initial projectors for WFs are given by

<Wannier.Initial.Projectors
C1-sp2 0.333333333 -0.333333333 0.00000000000000 0.0 0.0 1.0 -1.0 0.0 0.0
C1-pz 0.333333333 -0.333333333 0.00000000000000 0.0 0.0 1.0 -1.0 0.0 0.0
C1-sp2 -0.333333333 0.333333333 0.00 0.0 0.0 1.0 1.0 0.0 0.0
C1-pz -0.333333333 0.333333333 0.00 0.0 0.0 1.0 1.0 0.0 0.0
Wannier.Initial.Projectors>

Thus, the index of '4' and '8' correspond to pz orbitals. If you look at the line
for 'R ( 0 0 0 ) 1':

4 8 -0.112563484812 0.000000000000

you get

-0.112563484812*27.2 -> about -3.06 eV

So, the nearest neighbor hopping integral between pz and pz orbitals, corresponding
to pi-pi interation, is about -3.06 eV, which is close to the value (-2.99 eV) reported
in PRB 87, 195450 (2013).

Regards,

TO
メンテ

Page: [1]