Re: Projected band structure ( No.1 ) |
- Date: 2016/08/18 08:56
- Name: T. Ozaki
- Hi,
Yes, you can perform the same analysis using OpenMX. How to do that is found in the manual.
Regards,
TO
|
Re: Projected band structure ( No.2 ) |
- Date: 2016/08/18 13:48
- Name: Riemann <riemann.derakhshan@gmail.com>
- Dear Prof.Ozaki
Many thanks for your prompt reply.
I've searched in the manual and within section Interface with Wannier90 I've found the
phrase " OpenMX interfaces with Wannier90 [99] which constructs maximally localized Wannier
functions, and calculates physical properties such as Wannier projected DOS and
bandstructure,".
Did You mean that? should I do the band structure projection with Wannier function?
Sincerely Yours Riemann
|
Re: Projected band structure ( No.3 ) |
- Date: 2016/08/18 22:00
- Name: T. Ozaki
- Hi,
Since the bands can be decomposed to pseudo-atomic orbital contributions as shown in
http://www.openmx-square.org/openmx_man3.8/node154.html http://www.openmx-square.org/openmx_man3.8/node155.html
you only have to collect the contributions associated with pseudo-atomic orbitals in the two-dimensional layer. Then, it is easy to see how the original band structure of the free-standing two-dimensional layer is perturbed by the interaction with the substrate. The analysis can be performed in both the unfolding and non-unfolding cases, where the non-unfolding means that the unit cell used for the SCF calculation is used in the analysis as the 'reference' cell.
Regards,
TO
|
Re: Projected band structure ( No.4 ) |
- Date: 2016/08/19 04:18
- Name: Riemann <riemann.derakhshan@gmail.com>
- Dear Prof.Ozaki
Many thanks for Your kind and prompt reply.
I've done the band structure analysis for Bilayer silicene (as toy example) to find out
which pseudo-atomic orbitals are corresponding to which atom in structure. Herewith I've
attached the input file for Bilayer silicene. As can be seen from input file I've divided
the Silicon atom to two types. First, the (Si1) atoms belong to the lower layer and second,
(Si2) to the upper layer. After finishing the run, when I've seen the "silicene.unfold_orb"
file, it contains 784 rows and 54 columns. Now the question is this: Which row and columns
is belong to which pseudo-atomic orbitals and corresponds to which atoms in the structure?
# # File Name #
System.CurrrentDirectory ./ # default=./ System.Name silicene level.of.stdout 1 # default=1 (1-3) level.of.fileout 1 # default=1 (0-2) DATA.PATH /home/riemann/DFT/openmx3.7/DFT_DATA13 # # Definition of Atomic Species #
Species.Number 2 <Definition.of.Atomic.Species Si1 Si7.0-s2p2d1 Si_PBE13 Si2 Si7.0-s2p2d1 Si_PBE13 Definition.of.Atomic.Species>
# # Atoms #
Atoms.Number 4 Atoms.SpeciesAndCoordinates.Unit FRAC # Ang|AU <Atoms.SpeciesAndCoordinates # Unit=Ang. 1 Si1 0.3333333333300033 0.6666666666669983 0.5000000000000000 2 2 2 Si1 0.6666666666699967 0.3333333333330017 0.4668390626705445 2 2 3 Si2 0.0000000000000000 0.0000000000000000 0.6592873730830462 2 2 4 Si2 0.3333333333300033 0.6666666666669983 0.6261262380352548 2 2 Atoms.SpeciesAndCoordinates> Atoms.UnitVectors.Unit Ang # Ang|AU <Atoms.UnitVectors # unit=Ang. 3.342858059 1.930000000 0.000000000 -3.342858059 1.930000000 0.000000000 0.000000000 0.000000000 20.000000000 Atoms.UnitVectors>
# # SCF or Electronic System #
scf.XcType GGA-PBE # LDA|LSDA-CA|LSDA-PW|GGA-PBE scf.SpinPolarization nc # On|Off|NC scf.SpinOrbit.Coupling on scf.ElectronicTemperature 300.0 # default=300 (K) scf.energycutoff 200.0 # default=150 (Ry) scf.maxIter 200 # default=40 scf.EigenvalueSolver Band # DC|GDC|Cluster|Band scf.Kgrid 12 12 3 # means 4x4x4 scf.Mixing.Type Rmm-Diisk # Simple|Rmm-Diis|Gr-Pulay|Kerker|Rmm-Diisk scf.Init.Mixing.Weight 0.30 # default=0.30 scf.Min.Mixing.Weight 0.001 # default=0.001 scf.Max.Mixing.Weight 0.400 # default=0.40 scf.Mixing.History 15 # default=5 scf.Mixing.StartPulay 8 # default=6 scf.criterion 1.0e-6 # default=1.0e-6 (Hartree) scf.lapack.dste dstevx # dstegr|dstedc|dstevx, default=dstevx
# # Band structure #
Band.dispersion on # on|off, default=off ## if <Band.KPath.UnitCell does not exist, ## the reciprical lattice vector is employed. Band.Nkpath 3 <Band.kpath 200 0.33333333333 0.33333333333 0.0000000000 0.00000000000 0.00000000000 0.0000000000 K G 200 0.00000000000 0.00000000000 0.0000000000 0.50000000000 0.00000000000 0.0000000000 G M 200 0.50000000000 0.00000000000 0.0000000000 0.33333333333 0.33333333333 0.0000000000 M K Band.kpath>
# # DOS and PDOS #
Dos.fileout on # on|off, default=off Dos.Erange -20.0 20.0 # default = -20 (eV) 20 (eV) Dos.Kgrid 30 30 1 # default = Kgrid1 Kgrid2 Kgrid3
# # Band unfolding #
Unfolding.Electronic.Band on # on|off, default=off Unfolding.LowerBound -10.0 # default=-10 eV Unfolding.UpperBound 6.0 # default= 10 eV
Unfolding.desired_totalnkpt 30 Unfolding.Nkpoint 4
<Unfolding.kpoint K 0.33333333333 0.33333333333 0.0000000000 G 0.00000000000 0.00000000000 0.0000000000 M 0.50000000000 0.00000000000 0.0000000000 K 0.33333333333 0.33333333333 0.0000000000 Unfolding.kpoint>
|
Re: Projected band structure ( No.5 ) |
- Date: 2016/08/19 15:15
- Name: T. Ozaki
- Hi,
The index is the same as for orbitally decomposed Mulliken populations and LCAO coefficients found at
http://www.openmx-square.org/openmx_man3.8/node19.html http://www.openmx-square.org/openmx_man3.8/node93.html
Also, in Fig. 50 at http://www.openmx-square.org/openmx_man3.8/node154.html
you will find a similar analysis.
Hope this helps you.
Regards,
TO
|
Re: Projected band structure ( No.6 ) |
- Date: 2016/08/19 15:45
- Name: Riemann <riemann.derakhshan@gmail.com>
- Dear Prof.Ozaki
Many thanks for Your reply.
It helped me a lot and I've found out which pseudo-atomic orbitals are corresponding to
which atom in the structure in 'System.Name.out' file.
Sincerely Yours Riemann
|