Re: Hard to converge for geometric optimizer. ( No.1 ) |
- Date: 2006/09/19 15:23
- Name: Xinyuan Zhang <xzhang@uh.edu>
- Dear Prof.
It seems I have figure out what the problem is. The energy cutoff I set is 25 Ry, which is too small. I set it to 100, and the geometric optimization converges very fast. However, I am still a little puzzled. What's the difference between th energy cutoffs of openmx and other plane wave based program, like VASP and PWSCF? Because, in those softwares, the cutoff is usually around 30Ry. Thank you very much.
XZ
|
Re: openmx runtime questions ( No.2 ) |
- Date: 2006/09/19 15:42
- Name: T.Ozaki
- Hi,
scf.energycutoff is used for integrations of constructing Hamiltonian associated with exchange-correlation potential and difference charge Hartree potential. In addition, the same grid is used to solve Poisson' equation.
Thus, if one wants to find any correspondence, it can be regarded that this cutoff energy corresponds to the cutoff energy of solving Poisson's equation in PW codes.
The cutoff energy of 30 Ryd you referred is usually used for the basis function expansion of PW. In that case, the cutoff energy of solving Poisson's equation in PW codes becomes 30 times 4 = 120 Ryd, which is a similar vaule to 100 Ryd you used in OpenMX.
Although the force calculated by OpenMX is always consistent with the total energy without depending the scf.energycutoff, provided that the SCF is well converged and the gap is large enough, a too small scf.energycutoff leads an energy surface with ripple which makes the convergence difficult (see PRB 72, 045121 (2005)).
Thus, the value of scf.energycutoff should be increased as long as the computational time and resource are permitted, while the proper value is usually determined by considering a balance between accuracy and computational efficiency.
Regards,
TO
|
Re: Hard to converge for geometric optimizer. ( No.3 ) |
- Date: 2006/09/20 10:50
- Name: jessK
Dear Dr. Ozaki,
Nevertheless, the geometry optimization which implemented in openmx, is really very slow. For example, more than 300 steps is needed for relaxation of nanotube, 20-atoms in unit cell, 150 Ry cutoff. In contrast, only 20 steps is needed when plane-wave code is used (bfgs method). Is there a way to improve geometry optimization method?
JK
|
Re: Hard to converge for geometric optimizer. ( No.4 ) |
- Date: 2006/09/20 11:34
- Name: Xinyuan Zhang <xzhang@uh.edu>
- Dear Jessk:
I am not sure about your problem. I am relaxing a semiconductor cluster. DIIS takes around 70 steps to converge around 4e-4Ha/Bohr. You said it takes 300 steps? Did you set your convergence criterior too small? Actually, I still think it is problem dependent. I also used bfgs method in plane-wave based code. It takes around 50 steps to converge. I didn't see too much difference. However, I still hope bfgs method can be implemented in the next release of openmx. At least, we can have one more option. :)
Xinyuan
|
Re: Hard to converge for geometric optimizer. ( No.5 ) |
- Date: 2006/09/20 22:37
- Name: TO
- Dear Dr. JessK,
In my experiences, the DIIS in OpenMX converges very quickly for bulk systems (I mean dense structures). But the convergence speed becomes very slow for open systems like molecules. I am not so sure why it is. LBFGS can be one of options for such a case, however, I think that there is no definite reason that LBFGS should be much faster than DIIS.
I guess that some subtle control of the optimizer, which depends on the problem under consideration, may be needed to improve the convergence. Such development in OpenMX will be a future work.
Anyway, thank you for pointing it out.
TO
|
Re: Hard to converge for geometric optimizer. ( No.6 ) |
- Date: 2006/09/20 12:11
- Name: jessK
- Dear Xinyuan,
Unfortunately, I didn't find the exact numbers, so I could be wrong. But I clearly remember that difference was huge.
The system i tested - is BN nanotube, large band gap semiconductor. There are no problem to reach the SCF convergence and relaxation is very simple. Even SIESTA (LCAO) with conjugate gradient method relaxes this material very fast. In case of OpenMX, it took much more time.
As another example, I tested this nanotube with applied electric field. with siesta, I relaxed the structure during ~ 1 hour, 4 cpus. With OpenMX, I was unable to get relaxed structure, it took 4days*200 geom. steps and I aborted the calculations. You can see the relaxation history:
*********************************************************** *********************************************************** History of geometry optimization *********************************************************** *********************************************************** MD_iter SD_scaling |Maximum force| Utot (Hartree/Bohr) (Hartree) 1 9.30797663 0.02197065 -132.64687333 2 9.30797663 0.02145252 -132.65276043 3 9.30797663 0.02064926 -132.65862297 4 9.30797663 0.01985557 -132.66446138 5 9.30797663 0.01977825 -132.67028853 6 9.30797663 0.02013174 -132.67405128 7 9.30797663 0.02241399 -132.61098877 8 9.30797663 0.02357071 -132.58116026 9 9.30797663 0.02415250 -132.64733098 10 9.30797663 0.03276165 -133.03728808 11 9.30797663 0.02570220 -132.97949091 12 9.30797663 0.02256132 -132.24066978 13 9.30797663 0.02315663 -132.20677233 14 9.30797663 0.02761036 -134.32308919 15 9.30797663 0.02756749 -133.76465454 16 9.30797663 0.02438147 -133.77080470 17 9.30797663 0.02445360 -133.77678258 18 9.30797663 0.02444201 -133.78269535 19 9.30797663 0.02410570 -133.78857994 20 9.30797663 0.02331311 -133.79445200 21 9.30797663 0.02270091 -133.79823230 22 9.30797663 0.02162058 -133.80585924 23 9.30797663 0.02359062 -133.78985488 24 9.30797663 0.03002973 -133.75251843 25 9.30797663 0.02459928 -133.82001915 26 9.30797663 0.03100769 -133.63978259 27 9.30797663 0.03395454 -133.90019888 28 9.30797663 0.02423437 -133.73979940 29 9.30797663 0.02189136 -133.76571380 30 9.30797663 0.02170732 -133.76156455 31 9.30797663 0.02190546 -133.76755288 32 9.30797663 0.02234673 -133.77350782 33 9.30797663 0.02259680 -133.77942227 34 9.30797663 0.02247975 -133.78529277 35 9.30797663 0.02192682 -133.79112793 36 9.30797663 0.02147870 -133.79487444 37 9.30797663 0.02189250 -133.81961375 38 9.30797663 0.02221760 -133.77661006 39 9.30797663 0.02592658 -133.67233324 40 9.30797663 0.02482809 -133.61670021 41 9.30797663 0.02159366 -133.87473653 42 9.30797663 0.02697263 -134.17930085 43 9.30797663 0.02196968 -133.96302923 44 9.30797663 0.02178490 -133.95345230 45 9.30797663 0.02145672 -133.90566359 46 9.30797663 0.02047087 -133.91156351 47 9.30797663 0.02082911 -133.91739190 48 9.30797663 0.02119024 -133.92318177 49 9.30797663 0.02129926 -133.92896788 50 9.30797663 0.02102021 -133.93478152 51 9.30797663 0.02070365 -133.93855572 52 9.30797663 0.02584953 -133.79930082 53 9.30797663 0.02759281 -133.78276163 54 9.30797663 0.03859741 -134.19220581 55 9.30797663 0.03721584 -134.18927366 56 9.30797663 0.04718647 -134.50154978 57 9.30797663 0.02392354 -133.71281184 58 9.30797663 0.02550873 -133.70084194 59 9.30797663 0.02176464 -133.72960079 60 9.30797663 0.02386478 -133.77071066 61 9.30797663 0.02302093 -133.77683705 62 9.30797663 0.02205432 -133.78283121 63 9.30797663 0.02108444 -133.78871002 64 9.30797663 0.02054105 -133.79449874 65 9.30797663 0.02097819 -133.80024576 66 9.30797663 0.02124354 -133.80395443 67 9.30797663 0.03150436 -133.62946266 68 9.30797663 0.04573399 -133.36079221 69 9.30797663 0.04463750 -133.37046333 70 9.30797663 0.02466560 -133.74306683 71 9.30797663 0.03498671 -133.70491629 72 9.30797663 0.02496894 -133.85992432 73 9.30797663 0.02280401 -133.88640985 74 9.30797663 0.02851026 -133.31994870 75 9.30797663 0.03172489 -132.95966429 76 9.30797663 0.02738792 -132.96618241 77 9.30797663 0.02613051 -132.97233264 78 9.30797663 0.02595023 -132.97840499 79 9.30797663 0.02614248 -132.98450671 80 9.30797663 0.02545145 -132.99067568 81 9.30797663 0.02540712 -132.99468441 82 9.30797663 0.02660395 -132.96502309 83 9.30797663 0.02890728 -132.91854956 84 9.30797663 0.02898357 -133.01427976 85 9.30797663 0.02571749 -133.03626397 86 9.30797663 0.02255966 -133.12773730 87 9.30797663 0.02354591 -133.16177327 88 9.30797663 0.02278014 -133.06225987 89 9.30797663 0.02423647 -133.07450723 90 9.30797663 0.02346100 -133.11610403 91 9.30797663 0.02177290 -133.12205689 92 9.30797663 0.02141257 -133.12795273 93 9.30797663 0.02111751 -133.13383743 94 9.30797663 0.02111017 -133.13973090 95 9.30797663 0.02149041 -133.14565316 96 9.30797663 0.02159532 -133.14948555 97 9.30797663 0.02398750 -133.10830757 98 9.30797663 0.02397391 -133.10849695 99 9.30797663 0.02494061 -133.09053534 100 9.30797663 0.02887842 -133.16093541 101 9.30797663 0.02414730 -133.12747964 102 9.30797663 0.02599571 -133.00253932 103 9.30797663 0.02321235 -133.33366556 104 9.30797663 0.03140513 -132.87856435 105 9.30797663 0.02934975 -133.35485183 106 9.30797663 0.02265887 -133.36087797 107 9.30797663 0.02157519 -133.36669047 108 9.30797663 0.02154246 -133.37247548 109 9.30797663 0.02168855 -133.37829034 110 9.30797663 0.02164087 -133.38416412 111 9.30797663 0.02144234 -133.38798715 112 9.30797663 0.03948405 -133.10372352 113 9.30797663 0.03912256 -133.09113125 114 9.30797663 0.04272725 -133.03374289 115 9.30797663 0.02949344 -133.17490892 116 9.30797663 0.03099392 -133.06349996 117 9.30797663 0.02118986 -133.53573143 118 9.30797663 0.02079006 -133.56237323 119 9.30797663 0.02064962 -133.46617181 120 9.30797663 0.02644971 -133.63438464 121 9.30797663 0.02307512 -133.64034140 122 9.30797663 0.02182445 -133.64626999 123 9.30797663 0.02200790 -133.65217890 124 9.30797663 0.02193168 -133.65807642 125 9.30797663 0.02149207 -133.66395942 126 9.30797663 0.02102844 -133.66774452 127 9.30797663 0.02130413 -133.69349513 128 9.30797663 0.02143085 -133.69546718 129 9.30797663 0.02431362 -133.51143975 130 9.30797663 0.02366149 -133.52112817 131 9.30797663 0.02770383 -133.39491422 132 9.30797663 0.02098401 -133.77652187 133 9.30797663 0.02320749 -133.73859751 134 9.30797663 0.02161926 -133.63099707 135 9.30797663 0.02171984 -133.63947058 136 9.30797663 0.02177625 -133.64535258
You see, the forces change very slow. But, of course, I could make mistake.
JK
|
Re: Hard to converge for geometric optimizer. ( No.7 ) |
- Date: 2006/09/21 16:56
- Name: Xinyuan <xzhang@uh.edu>
- Hi jessK,
I am not sure about your problem. But I suggest you can try LDA only and turn off the spin polarization. I found it converges much better than GGA-PBE.
XZ
|
|