Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.1 ) |
- Date: 2016/12/27 01:06
- Name: Kylin
- ----------------- Lead-R-8ZGNR-NC -----------------
The number of threads in each node for OpenMP parallelization is 1.
******************************************************* ******************************************************* Welcome to OpenMX Ver. 3.8.1 Copyright (C), 2002-2014, T. Ozaki OpenMX comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under the constitution of the GNU-GPL. ******************************************************* *******************************************************
<Input_std> Your input file was normally read. <Input_std> The system includes 2 species and 36 atoms.
******************************************************* PAO and VPS *******************************************************
<SetPara_DFT> PAOs of species C were normally found. <SetPara_DFT> PAOs of species H were normally found. <SetPara_DFT> VPSs of species C were normally found. C_CA13.vps is j-dependent. In case of scf.SpinOrbit.Coupling=off, j-dependent pseudo potentials are averaged by j-degeneracy, which corresponds to a scalar relativistic treatment. <SetPara_DFT> VPSs of species H were normally found. H_CA13.vps is j-dependent. In case of scf.SpinOrbit.Coupling=off, j-dependent pseudo potentials are averaged by j-degeneracy, which corresponds to a scalar relativistic treatment.
******************************************************* Fourier transform of PAO and projectors of VNL *******************************************************
<FT_PAO> Fourier transform of pseudo atomic orbitals <FT_NLP> Fourier transform of non-local projectors <FT_ProExpn_VNA> Fourier transform of VNA separable projectors <FT_VNA> Fourier transform of VNA potentials <FT_ProductPAO> Fourier transform of product of PAOs
******************************************************* Allocation of atoms to proccesors at MD_iter= 1 *******************************************************
proc = 0 # of atoms= 18 estimated weight= 18.00000 proc = 1 # of atoms= 18 estimated weight= 18.00000
******************************************************* Analysis of neighbors and setting of grids *******************************************************
TFNAN= 1136 Average FNAN= 31.55556 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 1 ct_AN= 1 FNAN SNAN 28 0 <truncation> CpyCell= 1 ct_AN= 2 FNAN SNAN 33 0 <truncation> CpyCell= 1 ct_AN= 3 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 4 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 5 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 6 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 7 FNAN SNAN 33 0 <truncation> CpyCell= 1 ct_AN= 8 FNAN SNAN 28 0 <truncation> CpyCell= 1 ct_AN= 9 FNAN SNAN 25 0 <truncation> CpyCell= 1 ct_AN= 10 FNAN SNAN 28 0 <truncation> CpyCell= 1 ct_AN= 11 FNAN SNAN 33 0 <truncation> CpyCell= 1 ct_AN= 12 FNAN SNAN 34 0 <truncation> CpyCell= 1 ct_AN= 13 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 14 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 15 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 16 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 17 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 18 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 19 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 20 FNAN SNAN 36 0 .......... ......
TFNAN= 1136 Average FNAN= 31.55556 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 6 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 7 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 8 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 9 FNAN SNAN 25 0 <truncation> CpyCell= 2 ct_AN= 10 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 11 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 12 FNAN SNAN 34 0 <truncation> CpyCell= 2 ct_AN= 13 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 14 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 15 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 16 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 17 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 18 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 19 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 20 FNAN SNAN 36 0 .......... ......
TFNAN= 1136 Average FNAN= 31.55556 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 6 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 7 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 8 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 9 FNAN SNAN 25 0 <truncation> CpyCell= 2 ct_AN= 10 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 11 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 12 FNAN SNAN 34 0 <truncation> CpyCell= 2 ct_AN= 13 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 14 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 15 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 16 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 17 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 18 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 19 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 20 FNAN SNAN 36 0 .......... ......
<Check_System> The system is chain. lattice vectors (bohr) A = 0.000000000000, 0.000000000000, 9.221862824265 B = 18.897259885789, 0.000000000000, 0.000000000000 C = 0.000000000000, 51.022601691631, 0.000000000000 reciprocal lattice vectors (bohr^-1) RA = 0.000000000000, 0.000000000000, 0.681335802420 RB = 0.332491871581, 0.000000000000, 0.000000000000 RC = 0.000000000000, 0.123145137623, 0.000000000000 Grid_Origin -9.300995047544 -10.610790365924 10.649174081262 Cell_Volume = 8891.603609688429 (Bohr^3) GridVol = 0.024120018472 (Bohr^3) Grid_Origin -9.300995047544 -10.610790365924 10.649174081262 Cell_Volume = 8891.603609688429 (Bohr^3) GridVol = 0.024120018472 (Bohr^3) <UCell_Box> Info. of cutoff energy and num. of grids lattice vectors (bohr) A = 0.000000000000, 0.000000000000, 9.221862824265 B = 18.897259885789, 0.000000000000, 0.000000000000 C = 0.000000000000, 51.022601691631, 0.000000000000 reciprocal lattice vectors (bohr^-1) RA = 0.000000000000, 0.000000000000, 0.681335802420 RB = 0.332491871581, 0.000000000000, 0.000000000000 RC = 0.000000000000, 0.123145137623, 0.000000000000 Required cutoff energy (Ryd) for 3D-grids = 120.0000 Used cutoff energy (Ryd) for 3D-grids = 118.8399, 113.2041, 122.8343 Num. of grids of a-, b-, and c-axes = 32, 64, 180 Grid_Origin -9.300995047544 -10.610790365924 10.649174081262 Cell_Volume = 8891.603609688429 (Bohr^3) GridVol = 0.024120018472 (Bohr^3) Cell vectors (bohr) of the grid cell (gtv) gtv_a = 0.000000000000, 0.000000000000, 0.288183213258 gtv_b = 0.295269685715, 0.000000000000, 0.000000000000 gtv_c = 0.000000000000, 0.283458898287, 0.000000000000 |gtv_a| = 0.288183213258 |gtv_b| = 0.295269685715 |gtv_c| = 0.283458898287 Num. of grids overlapping with atom 1 = 21700 Num. of grids overlapping with atom 2 = 21712 Num. of grids overlapping with atom 3 = 21716 Num. of grids overlapping with atom 4 = 21708 Num. of grids overlapping with atom 5 = 21708 Num. of grids overlapping with atom 6 = 21716 Num. of grids overlapping with atom 7 = 21712 Num. of grids overlapping with atom 8 = 21698 Num. of grids overlapping with atom 9 = 21720 Num. of grids overlapping with atom 10 = 21700 Num. of grids overlapping with atom 11 = 21712 Num. of grids overlapping with atom 12 = 21740 Num. of grids overlapping with atom 13 = 21716 Num. of grids overlapping with atom 14 = 21716 Num. of grids overlapping with atom 15 = 21708 Num. of grids overlapping with atom 16 = 21716 Num. of grids overlapping with atom 17 = 21716 Num. of grids overlapping with atom 18 = 21708 Num. of grids overlapping with atom 19 = 21716 Num. of grids overlapping with atom 20 = 21716 .......... ......
******************************************************* SCF calculation at MD = 1 *******************************************************
<MD= 1> Calculation of the overlap matrix <MD= 1> Calculation of the nonlocal matrix <MD= 1> Calculation of the VNA projector matrix
******************* MD= 1 SCF= 1 ******************* <Band> Solving the eigenvalue problem... KGrids1: -0.49751 -0.49254 -0.48756 -0.48259 -0.47761 -0.47264 -0.46766 -0.46269 -0.45771 -0.45274 -0.44776 -0.44279 -0.43781 -0.43283 -0.42786 -0.42288 -0.41791 -0.41293 -0.40796 -0.40298 -0.39801 -0.39303 -0.38806 -0.38308 -0.37811 -0.37313 -0.36816 -0.36318 -0.35821 -0.35323 -0.34826 -0.34328 -0.33831 -0.33333 -0.32836 -0.32338 -0.31841 -0.31343 -0.30846 -0.30348 -0.29851 -0.29353 -0.28856 -0.28358 -0.27861 -0.27363 -0.26866 -0.26368 -0.25871 -0.25373 -0.24876 -0.24378 -0.23880 -0.23383 -0.22885 -0.22388 -0.21890 -0.21393 -0.20895 -0.20398 -0.19900 -0.19403 -0.18905 -0.18408 -0.17910 -0.17413 -0.16915 -0.16418 -0.15920 -0.15423 -0.14925 -0.14428 -0.13930 -0.13433 -0.12935 -0.12438 -0.11940 -0.11443 -0.10945 -0.10448 -0.09950 -0.09453 -0.08955 -0.08458 -0.07960 -0.07463 -0.06965 -0.06468 -0.05970 -0.05473 -0.04975 -0.04478 -0.03980 -0.03482 -0.02985 -0.02487 -0.01990 -0.01492 -0.00995 -0.00497 0.00000 0.00498 0.00995 0.01493 0.01990 0.02488 0.02985 0.03483 0.03980 0.04478 0.04975 0.05473 0.05970 0.06468 0.06965 0.07463 0.07960 0.08458 0.08955 0.09453 0.09950 0.10448 0.10945 0.11443 0.11940 0.12438 0.12935 0.13433 0.13930 0.14428 0.14925 0.15423 0.15920 0.16418 0.16916 0.17413 0.17911 0.18408 0.18906 0.19403 0.19901 0.20398 0.20896 0.21393 0.21891 0.22388 0.22886 0.23383 0.23881 0.24378 0.24876 0.25373 0.25871 0.26368 0.26866 0.27363 0.27861 0.28358 0.28856 0.29353 0.29851 0.30348 0.30846 0.31343 0.31841 0.32338 0.32836 0.33333 0.33831 0.34328 0.34826 0.35323 0.35821 0.36319 0.36816 0.37314 0.37811 0.38309 0.38806 0.39304 0.39801 0.40299 0.40796 0.41294 0.41791 0.42289 0.42786 0.43284 0.43781 0.44279 0.44776 0.45274 0.45771 0.46269 0.46766 0.47264 0.47761 0.48259 0.48756 0.49254 0.49751 KGrids2: 0.00000 KGrids3: 0.00000 <Band_DFT> Eigen, time=31.855721 <Band_DFT> DM, time=46.665751 1 C MulP 1.96 1.95 sum 3.90 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 2 C MulP 2.03 1.95 sum 3.98 diff 0.07 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 ( 90.00 90.00) 3 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 4 C MulP 2.01 1.99 sum 4.00 diff 0.02 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 ( 90.00 90.00) 5 C MulP 2.01 1.99 sum 4.00 diff 0.02 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 ( 90.00 90.00) 6 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 7 C MulP 2.03 1.95 sum 3.98 diff 0.07 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 ( 90.00 90.00) 8 C MulP 1.96 1.95 sum 3.90 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 9 C MulP 2.20 1.95 sum 4.15 diff 0.25 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 ( 90.00 90.00) 10 C MulP 1.96 1.95 sum 3.90 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 11 C MulP 2.03 1.95 sum 3.98 diff 0.07 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 ( 90.00 90.00) 12 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 13 C MulP 2.01 1.98 sum 3.99 diff 0.03 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 ( 90.00 90.00) 14 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 15 C MulP 2.01 1.99 sum 4.00 diff 0.02 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 ( 90.00 90.00) 16 C MulP 2.00 1.99 sum 4.00 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 17 C MulP 2.00 1.99 sum 4.00 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 18 C MulP 2.01 1.99 sum 4.00 diff 0.02 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 ( 90.00 90.00) 19 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00) 20 C MulP 2.01 1.98 sum 3.99 diff 0.03 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 ( 90.00 90.00) .......... ......
Sum of MulP: up = 66.91761 down = 65.08239 total= 132.00000 ideal(neutral)= 132.00000 <DFT> Total Spin Moment (muB) 1.410107751 Angles 90.000000000 90.000000000 <DFT> Total Orbital Moment (muB) 0.000000000 Angles 90.000000000 0.000000000 <DFT> Total Moment (muB) 1.410107751 Angles 90.000000000 90.000000000 <DFT> Mixing_weight= 0.100000000000 <DFT> Uele = -50.509599944532 dUele = 1.000000000000 <DFT> NormRD = 1.000000000000 Criterion = 0.000000001000
******************* MD= 1 SCF= 2 ******************* <Poisson> Poisson's equation using FFT... <Set_Hamiltonian> Hamiltonian matrix for VNA+dVH+Vxc... <Band> Solving the eigenvalue problem... KGrids1: -0.49751 -0.49254 -0.48756 -0.48259 -0.47761 -0.47264 -0.46766 -0.46269 -0.45771 -0.45274 -0.44776 -0.44279 -0.43781 -0.43283 -0.42786 -0.42288 -0.41791 -0.41293 -0.40796 -0.40298 -0.39801 -0.39303 -0.38806 -0.38308 -0.37811 -0.37313 -0.36816 -0.36318 -0.35821 -0.35323 -0.34826 -0.34328 -0.33831 -0.33333 -0.32836 -0.32338 -0.31841 -0.31343 -0.30846 -0.30348 -0.29851 -0.29353 -0.28856 -0.28358 -0.27861 -0.27363 -0.26866 -0.26368 -0.25871 -0.25373 -0.24876 -0.24378 -0.23880 -0.23383 -0.22885 -0.22388 -0.21890 -0.21393 -0.20895 -0.20398 -0.19900 -0.19403 -0.18905 -0.18408 -0.17910 -0.17413 -0.16915 -0.16418 -0.15920 -0.15423 -0.14925 -0.14428 -0.13930 -0.13433 -0.12935 -0.12438 -0.11940 -0.11443 -0.10945 -0.10448 -0.09950 -0.09453 -0.08955 -0.08458 -0.07960 -0.07463 -0.06965 -0.06468 -0.05970 -0.05473 -0.04975 -0.04478 -0.03980 -0.03482 -0.02985 -0.02487 -0.01990 -0.01492 -0.00995 -0.00497 0.00000 0.00498 0.00995 0.01493 0.01990 0.02488 0.02985 0.03483 0.03980 0.04478 0.04975 0.05473 0.05970 0.06468 0.06965 0.07463 0.07960 0.08458 0.08955 0.09453 0.09950 0.10448 0.10945 0.11443 0.11940 0.12438 0.12935 0.13433 0.13930 0.14428 0.14925 0.15423 0.15920 0.16418 0.16916 0.17413 0.17911 0.18408 0.18906 0.19403 0.19901 0.20398 0.20896 0.21393 0.21891 0.22388 0.22886 0.23383 0.23881 0.24378 0.24876 0.25373 0.25871 0.26368 0.26866 0.27363 0.27861 0.28358 0.28856 0.29353 0.29851 0.30348 0.30846 0.31343 0.31841 0.32338 0.32836 0.33333 0.33831 0.34328 0.34826 0.35323 0.35821 0.36319 0.36816 0.37314 0.37811 0.38309 0.38806 0.39304 0.39801 0.40299 0.40796 0.41294 0.41791 0.42289 0.42786 0.43284 0.43781 0.44279 0.44776 0.45274 0.45771 0.46269 0.46766 0.47264 0.47761 0.48259 0.48756 0.49254 0.49751 KGrids2: 0.00000 KGrids3: 0.00000 <Band_DFT> Eigen, time=18.585965 <Band_DFT> DM, time=27.763356 1 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 2 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 3 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 4 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 5 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 6 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 7 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 8 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 9 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 10 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 11 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 12 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 13 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 14 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 15 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 16 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 17 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 18 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 19 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) 20 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00) .......... ......
Sum of MulP: up = 0.00000 down = 0.00000 total= 0.00000 ideal(neutral)= 132.00000 <DFT> Total Spin Moment (muB) 0.000000000 Angles 90.000000000 0.000000000 <DFT> Total Orbital Moment (muB) 0.000000000 Angles 90.000000000 0.000000000 <DFT> Total Moment (muB) 0.000000000 Angles 90.000000000 0.000000000 <DFT> Mixing_weight= 0.100000000000 <DFT> Uele = nan dUele = nan <DFT> NormRD = nan Criterion = 0.000000001000
|
Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.2 ) |
- Date: 2016/12/27 01:08
- Name: Kylin
- ----------------- Lead-L-8ZGNR-NC -----------------
The number of threads in each node for OpenMP parallelization is 1.
******************************************************* ******************************************************* Welcome to OpenMX Ver. 3.8.1 Copyright (C), 2002-2014, T. Ozaki OpenMX comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under the constitution of the GNU-GPL. ******************************************************* *******************************************************
<Input_std> Your input file was normally read. <Input_std> The system includes 2 species and 36 atoms.
******************************************************* PAO and VPS *******************************************************
<SetPara_DFT> PAOs of species C were normally found. <SetPara_DFT> PAOs of species H were normally found. <SetPara_DFT> VPSs of species C were normally found. C_CA13.vps is j-dependent. In case of scf.SpinOrbit.Coupling=off, j-dependent pseudo potentials are averaged by j-degeneracy, which corresponds to a scalar relativistic treatment. <SetPara_DFT> VPSs of species H were normally found. H_CA13.vps is j-dependent. In case of scf.SpinOrbit.Coupling=off, j-dependent pseudo potentials are averaged by j-degeneracy, which corresponds to a scalar relativistic treatment.
******************************************************* Fourier transform of PAO and projectors of VNL *******************************************************
<FT_PAO> Fourier transform of pseudo atomic orbitals <FT_NLP> Fourier transform of non-local projectors <FT_ProExpn_VNA> Fourier transform of VNA separable projectors <FT_VNA> Fourier transform of VNA potentials <FT_ProductPAO> Fourier transform of product of PAOs
******************************************************* Allocation of atoms to proccesors at MD_iter= 1 *******************************************************
proc = 0 # of atoms= 18 estimated weight= 18.00000 proc = 1 # of atoms= 18 estimated weight= 18.00000
******************************************************* Analysis of neighbors and setting of grids *******************************************************
TFNAN= 1136 Average FNAN= 31.55556 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 1 ct_AN= 1 FNAN SNAN 25 0 <truncation> CpyCell= 1 ct_AN= 2 FNAN SNAN 28 0 <truncation> CpyCell= 1 ct_AN= 3 FNAN SNAN 33 0 <truncation> CpyCell= 1 ct_AN= 4 FNAN SNAN 34 0 <truncation> CpyCell= 1 ct_AN= 5 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 6 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 7 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 8 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 9 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 10 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 11 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 12 FNAN SNAN 36 0 <truncation> CpyCell= 1 ct_AN= 13 FNAN SNAN 34 0 <truncation> CpyCell= 1 ct_AN= 14 FNAN SNAN 33 0 <truncation> CpyCell= 1 ct_AN= 15 FNAN SNAN 28 0 <truncation> CpyCell= 1 ct_AN= 16 FNAN SNAN 25 0 <truncation> CpyCell= 1 ct_AN= 17 FNAN SNAN 20 0 <truncation> CpyCell= 1 ct_AN= 18 FNAN SNAN 20 0 <truncation> CpyCell= 1 ct_AN= 19 FNAN SNAN 25 0 <truncation> CpyCell= 1 ct_AN= 20 FNAN SNAN 28 0 .......... ......
TFNAN= 1136 Average FNAN= 31.55556 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 25 0 <truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 34 0 <truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 6 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 7 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 8 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 9 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 10 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 11 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 12 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 13 FNAN SNAN 34 0 <truncation> CpyCell= 2 ct_AN= 14 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 15 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 16 FNAN SNAN 25 0 <truncation> CpyCell= 2 ct_AN= 17 FNAN SNAN 20 0 <truncation> CpyCell= 2 ct_AN= 18 FNAN SNAN 20 0 <truncation> CpyCell= 2 ct_AN= 19 FNAN SNAN 25 0 <truncation> CpyCell= 2 ct_AN= 20 FNAN SNAN 28 0 .......... ......
TFNAN= 1136 Average FNAN= 31.55556 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 25 0 <truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 34 0 <truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 6 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 7 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 8 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 9 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 10 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 11 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 12 FNAN SNAN 36 0 <truncation> CpyCell= 2 ct_AN= 13 FNAN SNAN 34 0 <truncation> CpyCell= 2 ct_AN= 14 FNAN SNAN 33 0 <truncation> CpyCell= 2 ct_AN= 15 FNAN SNAN 28 0 <truncation> CpyCell= 2 ct_AN= 16 FNAN SNAN 25 0 <truncation> CpyCell= 2 ct_AN= 17 FNAN SNAN 20 0 <truncation> CpyCell= 2 ct_AN= 18 FNAN SNAN 20 0 <truncation> CpyCell= 2 ct_AN= 19 FNAN SNAN 25 0 <truncation> CpyCell= 2 ct_AN= 20 FNAN SNAN 28 0 .......... ......
<Check_System> The system is chain. lattice vectors (bohr) A = 0.000000000000, 0.000000000000, 9.221862824265 B = 18.897259885789, 0.000000000000, 0.000000000000 C = 0.000000000000, 51.022601691631, 0.000000000000 reciprocal lattice vectors (bohr^-1) RA = 0.000000000000, 0.000000000000, 0.681335802420 RB = 0.332491871581, 0.000000000000, 0.000000000000 RC = 0.000000000000, 0.123145137623, 0.000000000000 Grid_Origin -9.300995047544 -10.610790365924 -1.134317305299 Cell_Volume = 8891.603609688429 (Bohr^3) GridVol = 0.024120018472 (Bohr^3) Grid_Origin -9.300995047544 -10.610790365924 -1.134317305299 Cell_Volume = 8891.603609688429 (Bohr^3) GridVol = 0.024120018472 (Bohr^3) <UCell_Box> Info. of cutoff energy and num. of grids lattice vectors (bohr) A = 0.000000000000, 0.000000000000, 9.221862824265 B = 18.897259885789, 0.000000000000, 0.000000000000 C = 0.000000000000, 51.022601691631, 0.000000000000 reciprocal lattice vectors (bohr^-1) RA = 0.000000000000, 0.000000000000, 0.681335802420 RB = 0.332491871581, 0.000000000000, 0.000000000000 RC = 0.000000000000, 0.123145137623, 0.000000000000 Required cutoff energy (Ryd) for 3D-grids = 120.0000 Used cutoff energy (Ryd) for 3D-grids = 118.8399, 113.2041, 122.8343 Num. of grids of a-, b-, and c-axes = 32, 64, 180 Grid_Origin -9.300995047544 -10.610790365924 -1.134317305299 Cell_Volume = 8891.603609688429 (Bohr^3) GridVol = 0.024120018472 (Bohr^3) Cell vectors (bohr) of the grid cell (gtv) gtv_a = 0.000000000000, 0.000000000000, 0.288183213258 gtv_b = 0.295269685715, 0.000000000000, 0.000000000000 gtv_c = 0.000000000000, 0.283458898287, 0.000000000000 |gtv_a| = 0.288183213258 |gtv_b| = 0.295269685715 |gtv_c| = 0.283458898287 Num. of grids overlapping with atom 1 = 21718 Num. of grids overlapping with atom 2 = 21698 Num. of grids overlapping with atom 3 = 21712 Num. of grids overlapping with atom 4 = 21738 Num. of grids overlapping with atom 5 = 21716 Num. of grids overlapping with atom 6 = 21718 Num. of grids overlapping with atom 7 = 21704 Num. of grids overlapping with atom 8 = 21714 Num. of grids overlapping with atom 9 = 21714 Num. of grids overlapping with atom 10 = 21704 Num. of grids overlapping with atom 11 = 21718 Num. of grids overlapping with atom 12 = 21716 Num. of grids overlapping with atom 13 = 21740 Num. of grids overlapping with atom 14 = 21712 Num. of grids overlapping with atom 15 = 21698 Num. of grids overlapping with atom 16 = 21720 Num. of grids overlapping with atom 17 = 21710 Num. of grids overlapping with atom 18 = 21710 Num. of grids overlapping with atom 19 = 21718 Num. of grids overlapping with atom 20 = 21698 .......... ......
******************************************************* SCF calculation at MD = 1 *******************************************************
<MD= 1> Calculation of the overlap matrix <MD= 1> Calculation of the nonlocal matrix <MD= 1> Calculation of the VNA projector matrix
******************* MD= 1 SCF= 1 ******************* <Band> Solving the eigenvalue problem... KGrids1: -0.49751 -0.49254 -0.48756 -0.48259 -0.47761 -0.47264 -0.46766 -0.46269 -0.45771 -0.45274 -0.44776 -0.44279 -0.43781 -0.43283 -0.42786 -0.42288 -0.41791 -0.41293 -0.40796 -0.40298 -0.39801 -0.39303 -0.38806 -0.38308 -0.37811 -0.37313 -0.36816 -0.36318 -0.35821 -0.35323 -0.34826 -0.34328 -0.33831 -0.33333 -0.32836 -0.32338 -0.31841 -0.31343 -0.30846 -0.30348 -0.29851 -0.29353 -0.28856 -0.28358 -0.27861 -0.27363 -0.26866 -0.26368 -0.25871 -0.25373 -0.24876 -0.24378 -0.23880 -0.23383 -0.22885 -0.22388 -0.21890 -0.21393 -0.20895 -0.20398 -0.19900 -0.19403 -0.18905 -0.18408 -0.17910 -0.17413 -0.16915 -0.16418 -0.15920 -0.15423 -0.14925 -0.14428 -0.13930 -0.13433 -0.12935 -0.12438 -0.11940 -0.11443 -0.10945 -0.10448 -0.09950 -0.09453 -0.08955 -0.08458 -0.07960 -0.07463 -0.06965 -0.06468 -0.05970 -0.05473 -0.04975 -0.04478 -0.03980 -0.03482 -0.02985 -0.02487 -0.01990 -0.01492 -0.00995 -0.00497 0.00000 0.00498 0.00995 0.01493 0.01990 0.02488 0.02985 0.03483 0.03980 0.04478 0.04975 0.05473 0.05970 0.06468 0.06965 0.07463 0.07960 0.08458 0.08955 0.09453 0.09950 0.10448 0.10945 0.11443 0.11940 0.12438 0.12935 0.13433 0.13930 0.14428 0.14925 0.15423 0.15920 0.16418 0.16916 0.17413 0.17911 0.18408 0.18906 0.19403 0.19901 0.20398 0.20896 0.21393 0.21891 0.22388 0.22886 0.23383 0.23881 0.24378 0.24876 0.25373 0.25871 0.26368 0.26866 0.27363 0.27861 0.28358 0.28856 0.29353 0.29851 0.30348 0.30846 0.31343 0.31841 0.32338 0.32836 0.33333 0.33831 0.34328 0.34826 0.35323 0.35821 0.36319 0.36816 0.37314 0.37811 0.38309 0.38806 0.39304 0.39801 0.40299 0.40796 0.41294 0.41791 0.42289 0.42786 0.43284 0.43781 0.44279 0.44776 0.45274 0.45771 0.46269 0.46766 0.47264 0.47761 0.48259 0.48756 0.49254 0.49751 KGrids2: 0.00000 KGrids3: 0.00000 <Band_DFT> Eigen, time=34.270912 <Band_DFT> DM, time=48.431466 1 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00) 2 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 3 C MulP 2.03 1.95 sum 3.98 diff 0.07 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 (180.00 0.00) 4 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 5 C MulP 2.01 1.98 sum 3.99 diff 0.03 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 (180.00 0.00) 6 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 7 C MulP 2.01 1.99 sum 4.00 diff 0.02 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 (180.00 0.00) 8 C MulP 2.00 1.99 sum 4.00 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 9 C MulP 2.00 1.99 sum 4.00 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 10 C MulP 2.01 1.99 sum 4.00 diff 0.02 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 (180.00 0.00) 11 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 12 C MulP 2.01 1.98 sum 3.99 diff 0.03 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 (180.00 0.00) 13 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 14 C MulP 2.03 1.95 sum 3.98 diff 0.07 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 (180.00 0.00) 15 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 16 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00) 17 H MulP 0.53 0.47 sum 1.00 diff 0.05 ( 0.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.05 ( 0.00 0.00) 18 H MulP 0.53 0.47 sum 1.00 diff 0.05 ( 0.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.05 ( 0.00 0.00) 19 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00) 20 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) .......... ......
Sum of MulP: up = 66.91761 down = 65.08239 total= 132.00000 ideal(neutral)= 132.00000 <DFT> Total Spin Moment (muB) 1.410107658 Angles 180.000000000 0.000000000 <DFT> Total Orbital Moment (muB) 0.000000000 Angles 90.000000000 0.000000000 <DFT> Total Moment (muB) 1.410107658 Angles 180.000000000 0.000000000 <DFT> Mixing_weight= 0.001000000000 <DFT> Uele = -50.509600151669 dUele = 1.000000000000 <DFT> NormRD = 1.000000000000 Criterion = 0.000000001000
******************* MD= 1 SCF= 2 ******************* <Poisson> Poisson's equation using FFT... <Set_Hamiltonian> Hamiltonian matrix for VNA+dVH+Vxc... <Band> Solving the eigenvalue problem... KGrids1: -0.49751 -0.49254 -0.48756 -0.48259 -0.47761 -0.47264 -0.46766 -0.46269 -0.45771 -0.45274 -0.44776 -0.44279 -0.43781 -0.43283 -0.42786 -0.42288 -0.41791 -0.41293 -0.40796 -0.40298 -0.39801 -0.39303 -0.38806 -0.38308 -0.37811 -0.37313 -0.36816 -0.36318 -0.35821 -0.35323 -0.34826 -0.34328 -0.33831 -0.33333 -0.32836 -0.32338 -0.31841 -0.31343 -0.30846 -0.30348 -0.29851 -0.29353 -0.28856 -0.28358 -0.27861 -0.27363 -0.26866 -0.26368 -0.25871 -0.25373 -0.24876 -0.24378 -0.23880 -0.23383 -0.22885 -0.22388 -0.21890 -0.21393 -0.20895 -0.20398 -0.19900 -0.19403 -0.18905 -0.18408 -0.17910 -0.17413 -0.16915 -0.16418 -0.15920 -0.15423 -0.14925 -0.14428 -0.13930 -0.13433 -0.12935 -0.12438 -0.11940 -0.11443 -0.10945 -0.10448 -0.09950 -0.09453 -0.08955 -0.08458 -0.07960 -0.07463 -0.06965 -0.06468 -0.05970 -0.05473 -0.04975 -0.04478 -0.03980 -0.03482 -0.02985 -0.02487 -0.01990 -0.01492 -0.00995 -0.00497 0.00000 0.00498 0.00995 0.01493 0.01990 0.02488 0.02985 0.03483 0.03980 0.04478 0.04975 0.05473 0.05970 0.06468 0.06965 0.07463 0.07960 0.08458 0.08955 0.09453 0.09950 0.10448 0.10945 0.11443 0.11940 0.12438 0.12935 0.13433 0.13930 0.14428 0.14925 0.15423 0.15920 0.16418 0.16916 0.17413 0.17911 0.18408 0.18906 0.19403 0.19901 0.20398 0.20896 0.21393 0.21891 0.22388 0.22886 0.23383 0.23881 0.24378 0.24876 0.25373 0.25871 0.26368 0.26866 0.27363 0.27861 0.28358 0.28856 0.29353 0.29851 0.30348 0.30846 0.31343 0.31841 0.32338 0.32836 0.33333 0.33831 0.34328 0.34826 0.35323 0.35821 0.36319 0.36816 0.37314 0.37811 0.38309 0.38806 0.39304 0.39801 0.40299 0.40796 0.41294 0.41791 0.42289 0.42786 0.43284 0.43781 0.44279 0.44776 0.45274 0.45771 0.46269 0.46766 0.47264 0.47761 0.48259 0.48756 0.49254 0.49751 KGrids2: 0.00000 KGrids3: 0.00000 <Band_DFT> Eigen, time=37.292076 <Band_DFT> DM, time=48.397084 1 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00) 2 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 3 C MulP 2.03 1.95 sum 3.98 diff 0.07 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 (180.00 0.00) 4 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 5 C MulP 2.01 1.98 sum 3.99 diff 0.03 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 (180.00 0.00) 6 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 7 C MulP 2.01 1.99 sum 4.00 diff 0.02 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 (180.00 0.00) 8 C MulP 2.00 1.99 sum 4.00 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 9 C MulP 2.00 1.99 sum 4.00 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 10 C MulP 2.01 1.99 sum 4.00 diff 0.02 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 (180.00 0.00) 11 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 12 C MulP 2.01 1.98 sum 3.99 diff 0.03 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 (180.00 0.00) 13 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 14 C MulP 2.03 1.95 sum 3.98 diff 0.07 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 (180.00 0.00) 15 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) 16 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00) 17 H MulP 0.53 0.47 sum 1.00 diff 0.05 ( 0.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.05 ( 0.00 0.00) 18 H MulP 0.53 0.47 sum 1.00 diff 0.05 ( 0.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.05 ( 0.00 0.00) 19 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00) 20 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00) .......... ......
Sum of MulP: up = 66.91749 down = 65.08251 total= 132.00000 ideal(neutral)= 132.00000 <DFT> Total Spin Moment (muB) 1.410155144 Angles 180.000000000 0.000000000 <DFT> Total Orbital Moment (muB) 0.000000000 Angles 90.000000000 0.000000000 <DFT> Total Moment (muB) 1.410155144 Angles 180.000000000 0.000000000 <DFT> Mixing_weight= 0.001000000000 <DFT> Uele = -50.537764932120 dUele = 0.028164780451 <DFT> NormRD = 5.498621424794 Criterion = 0.000000001000
|
Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.3 ) |
- Date: 2016/12/27 15:04
- Name: T. Ozaki
- Hi,
I also reproduced the erratic behavior for Lead-R-8ZGNR-NC.dat when using two and three MPI processes. The error did not appear when I used four MPI processes and more. There must be a some program bug. Once I fix it, I will let you know.
Regards,
TO
|
Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.4 ) |
- Date: 2016/12/28 00:08
- Name: Kylin
- Dear TO
Thanks for your support. Actually I has successfully bypassed this problem by modifying the atom config in both Lead-R-8ZGNR-NC.dat and NEGF-8ZGNR-NC.dat files. I attached the runtestNEGF.result in the following
------ Origin Atom Confige ------- 1 C 0.0000005 0.7140385 6.1011879 2.5000000 1.5000000 90.0 90.0 0.0 0.0 0 off ------ Modified Atom Confige ------- 1 C 0.0000005 0.7140385 6.1011879 2.5000000 1.5000000 90.0000001 90.0 0.0 0.0 0 off
It seems that in dealing with the 8th column number (some kind of degree??), certain math library may return NAN or infty for exact value of 90. Unfortunately this erratic problem may attributed to the compilation optimization process and may greatly depends on the compiler and math library or even the machine. So I wonder whether or not TO could really solve this problem.
BTW, could you explain the meaning of 8~13 columns in the Atoms.SpeciesAndCoordinates setup. I am sorry but I didn't find that in the manual only for the previous 1~7 columns
Cheers
Kylin
----------- runtestNEGF.result --------------- 1 negf_example/Lead-Au-Chain-NC. Elapsed time(s)= 28.68 diff Utot= 0.000000000186 diff Force= 0.000000002299 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 2 negf_example/Lead-Chain.dat Elapsed time(s)= 5.69 diff Utot= 0.000000000034 diff Force= 0.000000000000 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 3 negf_example/Lead-Graphene.dat Elapsed time(s)= 9.45 diff Utot= 0.000000000007 diff Force= 0.000000000000 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 4 negf_example/Lead-L-8ZGNR-NC.d Elapsed time(s)= 299.06 diff Utot= 0.000000000004 diff Force= 0.000000000018 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 5 negf_example/Lead-L-8ZGNR.dat Elapsed time(s)= 158.95 diff Utot= 0.000000000005 diff Force= 0.000000000003 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 6 negf_example/Lead-R-8ZGNR-NC.d Elapsed time(s)= 309.52 diff Utot= 0.000000000001 diff Force= 0.000000000018 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 7 negf_example/Lead-R-8ZGNR.dat Elapsed time(s)= 153.28 diff Utot= 0.000000000005 diff Force= 0.000000000001 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 8 negf_example/NEGF-8ZGNR-0.3.da Elapsed time(s)= 812.91 diff Utot= 0.000000000001 diff Force= 0.000000000670 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 9 negf_example/NEGF-8ZGNR-NC.dat Elapsed time(s)= 2123.76 diff Utot= 0.000000000036 diff Force= 0.000000000304 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000 10 negf_example/NEGF-Au-Chain-NC. Elapsed time(s)= 497.77 diff Utot= 0.000003858401 diff Force= 0.000000001055 diff EigenChannel= 0.000004341700 diff CurrentDensity= 0.000000000000 11 negf_example/NEGF-Chain.dat Elapsed time(s)= 443.41 diff Utot= 0.000000001914 diff Force= 0.000000003178 diff EigenChannel= 0.000000000100 diff CurrentDensity= 0.000000000000 12 negf_example/NEGF-Graphene.dat Elapsed time(s)= 23.24 diff Utot= 0.000000141372 diff Force= 0.000000002245 diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
Total elapsed time (s) 4865.73
|
Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.5 ) |
- Date: 2017/03/11 09:21
- Name: T. Ozaki
- Hi,
It turned out that the problem is caused by a math library routine, zheevx, which is called from EigenBand_lapack.c. I have a lot of experiences that zheevx in MKL tends to fail for matrices, especially for, having multiple degenerate eigenvalues, while ACML is more robust for such a problem.
In fact I found that the problem happens for MKL in composer_xe_2011, but not for ACML5.3.0.
The meaning of 8-13 columns is found at http://www.openmx-square.org/openmx_man3.8/node99.html
Regards,
TO
|
|