How to calculate eigenstates from HS.out |
- Date: 2021/07/01 23:39
- Name: PES217i
- Dear OpenMX developers,
From HS.out we can get hamiltonian matrix and overlap matrix information, and just solve the generalized eigenvalue problem for non periodic case. However, it's complicated to reconstruct the full hamiltonian matrix for periodic boundary condition. For example ``` System.CurrrentDirectory ./ System.Name Si level.of.stdout 1 level.of.fileout 1 HS.fileout on data.path /usr/share/openmx/DFT_DATA19/
Species.Number 1 <Definition.of.Atomic.Species Si Si7.0-s2p2d1 Si_PBE19 Definition.of.Atomic.Species>
Atoms.Number 2 Atoms.SpeciesAndCoordinates.Unit Ang <Atoms.SpeciesAndCoordinates 1 Si 1.9334873 1.1162994 0.7893429 2.0 2.0 2 Si 0.0000000 0.0000000 0.0000000 2.0 2.0 Atoms.SpeciesAndCoordinates>
Atoms.UnitVectors.Unit Ang <Atoms.UnitVectors 3.8669746 0.0000000 0.0000000 1.9334873 3.3488983 0.0000000 1.9334873 1.1162994 3.1573716 Atoms.UnitVectors>
scf.XcType GGA-PBE scf.SpinPolarization off scf.ElectronicTemperature 300.0 scf.energycutoff 200.0 scf.maxIter 100 scf.EigenvalueSolver band scf.Kgrid 6 6 6 scf.Mixing.Type rmm-diisk scf.Init.Mixing.Weight 0.05 scf.Min.Mixing.Weight 0.01 scf.Max.Mixing.Weight 0.30 scf.Mixing.History 25 scf.Mixing.StartPulay 15 scf.criterion 1.0e-7 ``` returns ``` Kohn-Sham Hamiltonian spin=0 1 1 0 0 0 13 13 -0.414585652260606 0.070511543797452 -0.000040960788604 -0.000023615313957 -0.000016706309897 -0.000028193596465 -0.000016255763050 -0.000011498953496 0.000003260132486 -0.000003764500243 -0.000006511756245 -0.000004606500185 -0.000002670755248 0.070511543797452 0.077468379502132 -0.000010154966458 -0.000005850941319 -0.000004139956970 -0.000017139890116 -0.000009885402784 -0.000006991470455 0.000014318826079 -0.000016529731028 -0.000028640135283 -0.000020249251571 -0.000011691990744 -0.000040960769016 -0.000010154945278 -0.214572831290876 0.000002396483155 0.000001692212984 0.112042161357372 -0.000019688155321 -0.000013920125209 0.000016575955830 -0.000030987909459 0.047417087807296 0.033528935324285 0.000003214956409 -0.000023615313957 -0.000005850941319 0.000002396483155 -0.214575586605935 0.000000968472094 -0.000019688237038 0.112064887465310 -0.000008038330967 0.000009555557097 0.047452816626242 -0.000030986234610 0.000003215023557 0.033525221435613 -0.000016706309897 -0.000004139956970 0.000001692212984 0.000000968472094 -0.214576278174593 -0.000013920281367 -0.000008038270347 0.112070573722500 -0.058107623059128 0.000001856925887 0.000003215389118 -0.000033263348726 -0.000019177555573 -0.000028193595483 -0.000017139880250 0.112042161357372 -0.000019688237038 -0.000013920281367 0.145093445640816 0.000002684885754 0.000001897572929 0.000014173756101 -0.000020812053203 -0.015455405518911 -0.010928625479226 -0.000005288361132 -0.000016255763050 -0.000009885402784 -0.000019688155321 0.112064887465310 -0.000008038270347 0.000002684885754 0.145090348232829 0.000001090573204 0.000008174048884 -0.015431405805998 -0.000020811493513 -0.000005288093190 -0.010922517001955 -0.000011498953496 -0.000006991470455 -0.000013920125209 -0.000008038330967 0.112070573722500 0.000001897572929 0.000001090573204 0.145089574923219 0.018900021998709 -0.000003054225593 -0.000005288047227 -0.000017073520303 -0.000009841481803 0.000003260132486 0.000014318826079 0.000016575917906 0.000009555557098 -0.058107623059128 0.000014173694947 0.000008174048884 0.018900021998709 0.227568201419109 0.000001129018714 0.000001948496244 0.000002493131625 0.000001436128850 -0.000003764500243 -0.000016529731028 -0.000030987843773 0.047452816626242 0.000001856925887 -0.000020811947281 -0.015431405805998 -0.000003054225593 0.000001129018714 0.241262242047671 -0.000003466634286 -0.000001807042294 -0.019367304312603 -0.000006511756245 -0.000028640135283 0.047417087807296 -0.000030986168924 0.000003215389118 -0.015455405518911 -0.000020811387592 -0.000005288047227 0.000001948496244 -0.000003466634286 0.241258240047084 -0.019369404166189 -0.000001807095572 -0.000004606500185 -0.000020249251571 0.033528935324285 0.000003215023557 -0.000033263283040 -0.010928625479226 -0.000005288093190 -0.000017073414382 0.000002493131625 -0.000001807042294 -0.019369404166189 0.254954473314526 -0.000000821489505 -0.000002670755248 -0.000011691990744 0.000003214956409 0.033525221435613 -0.000019177555573 -0.000005288361132 -0.010922517001955 -0.000009841481803 0.000001436128850 -0.019367304312603 -0.000001807095572 -0.000000821489505 0.254955428069612 1 1 -2 0 1 13 13 -0.000030163509920 0.000197369321868 -0.000101309744488 0.000020140431661 0.000054918838303 0.000323600319204 -0.000063463684574 -0.000175726993893 0.000004714967008 -0.000017951404367 0.000007448830919 0.000019907665289 -0.000004240898101 0.000198732344584 -0.001277682246349 0.000638078502461 -0.000126721143556 -0.000345940766383 -0.002018211725552 0.000395600940133 0.001096037180957 -0.000032018340016 0.000120189416951 -0.000049989970849 -0.000134138151651 0.000027950810778 0.000101669935211 -0.000636982652713 0.000311244861034 -0.000063170674205 -0.000176261138479 -0.000996358006482 0.000202056806400 0.000564790864013 -0.000014098323728 0.000056894536776 -0.000024627194011 -0.000066817433825 0.000013837888916 -0.000019035650663 0.000119853856927 -0.000061918338745 0.000000616251013 0.000033082472366 0.000198046316172 -0.000000743780995 -0.000105956359982 0.000002941812810 -0.000012090038635 0.000001115948139 0.000012655205404 -0.000000468204369 -0.000055529503165 0.000347694181724 -0.000176702224604 0.000033849050467 0.000083181981402 0.000566203057981 -0.000108411172640 -0.000265805095270 0.000011822541237 -0.000033631749228 0.000013636905264 0.000033441176696 -0.000006562694114 -0.000325255877750 0.002019196979921 -0.000998535643826 0.000203042613061 0.000565589553784 0.003156053652785 -0.000641146299232 -0.001790906141077 0.000045898054549 -0.000184437588978 0.000079787473841 0.000217099056656 -0.000044639629897 0.000061500134681 -0.000381911245345 0.000198023078810 -0.000000889929637 -0.000105998014157 -0.000626484189923 -0.000002208230428 0.000335410137807 -0.000009456950529 0.000039314563974 -0.000002342352169 -0.000042072814618 0.000000429010205 0.000177433314807 -0.001101468624693 0.000567358415359 -0.000109070724411 -0.000266583747523 -0.001796070116892 0.000344384981751 0.000839477044486 -0.000038474264221 0.000109056672491 -0.000044671205611 -0.000108279036366 0.000021420949358 0.000004445166186 -0.000030618919287 0.000013564721694 -0.000003004235176 -0.000011461035007 -0.000043804832748 0.000009248608447 0.000037461028404 0.000000519360411 0.000002167102564 -0.000001134572452 -0.000003931974775 0.000000851499301 -0.000018045935768 0.000119575341046 -0.000056832512015 0.000012845649326 0.000033320268942 0.000183634945993 -0.000041526495004 -0.000107767808034 0.000002233640291 -0.000010061301329 0.000004761107264 0.000012422215169 -0.000002855855270 0.000006796895033 -0.000046493012621 0.000023249805592 -0.000001185129587 -0.000012773758054 -0.000075372505361 0.000002704757806 0.000041700674677 -0.000000936451422 0.000004780928862 -0.000000499550285 -0.000004769404007 0.000000640093329 0.000019998031396 -0.000133693861335 0.000066826736665 -0.000013430735521 -0.000033179850122 -0.000216036297978 0.000043216511752 0.000107215072381 -0.000004143658537 0.000012319952213 -0.000005220413034 -0.000012851783351 0.000002498364792 -0.000003989291501 0.000026344593983 -0.000013222533287 0.000000584869270 0.000006146230103 0.000042798196076 -0.000001528742369 -0.000020046882930 0.000000638840342 -0.000002906587310 0.000000393958764 0.000002406492175 -0.000000144972677 ... ``` "1 1 0 0 0 13 13" means "ct_AN Gh_AN atv_ijk[Rn][1] atv_ijk[Rn][2] atv_ijk[Rn][3] TNO1 TNO2". The whole (ct_AN, Gh_AN,atv_ijk[Rn][1],atv_ijk[Rn][2],atv_ijk[Rn][3]) are ``` (1, 1, 0, 0, 0), (1, 1, -2, 0, 1), (1, 1, -2, 1, 0), (1, 1, -2, 1, 1), (1, 1, -1, -1, 0), (1, 1, -1, -1, 1), (1, 1, -1, -1, 2), (1, 1, -1, 0, -1), (1, 1, -1, 0, 0), (1, 1, -1, 0, 1), (1, 1, -1, 0, 2), (1, 1, -1, 1, -1), (1, 1, -1, 1, 0), (1, 1, -1, 1, 1), (1, 1, -1, 2, -1), (1, 1, -1, 2, 0), (1, 1, 0, -2, 1), (1, 1, 0, -1, -1), (1, 1, 0, -1, 0), (1, 1, 0, -1, 1), (1, 1, 0, -1, 2), (1, 1, 0, 0, -1), (1, 1, 0, 0, 1), (1, 1, 0, 1, -2), (1, 1, 0, 1, -1), (1, 1, 0, 1, 0), (1, 1, 0, 1, 1), (1, 1, 0, 2, -1), (1, 1, 1, -2, 0), (1, 1, 1, -2, 1), (1, 1, 1, -1, -1), (1, 1, 1, -1, 0), (1, 1, 1, -1, 1), (1, 1, 1, 0, -2), (1, 1, 1, 0, -1), (1, 1, 1, 0, 0), (1, 1, 1, 0, 1), (1, 1, 1, 1, -2), (1, 1, 1, 1, -1), (1, 1, 1, 1, 0), (1, 1, 2, -1, -1), (1, 1, 2, -1, 0), (1, 1, 2, 0, -1), (1, 2, 0, 0, 0), (1, 2, -2, 1, 1), (1, 2, -1, -1, 1), (1, 2, -1, -1, 2), (1, 2, -1, 0, 0), (1, 2, -1, 0, 1), (1, 2, -1, 0, 2), (1, 2, -1, 1, -1), (1, 2, -1, 1, 0), (1, 2, -1, 1, 1), (1, 2, -1, 1, 2), (1, 2, -1, 2, -1), (1, 2, -1, 2, 0), (1, 2, -1, 2, 1), (1, 2, 0, -1, 0), (1, 2, 0, -1, 1), (1, 2, 0, -1, 2), (1, 2, 0, 0, -1), (1, 2, 0, 0, 1), (1, 2, 0, 0, 2), (1, 2, 0, 1, -1), (1, 2, 0, 1, 0), (1, 2, 0, 1, 1), (1, 2, 0, 2, -1), (1, 2, 0, 2, 0), (1, 2, 1, -2, 1), (1, 2, 1, -1, -1), (1, 2, 1, -1, 0), (1, 2, 1, -1, 1), (1, 2, 1, -1, 2), (1, 2, 1, 0, -1), (1, 2, 1, 0, 0), (1, 2, 1, 0, 1), (1, 2, 1, 1, -2), (1, 2, 1, 1, -1), (1, 2, 1, 1, 0), (1, 2, 1, 1, 1), (1, 2, 1, 2, -1), (1, 2, 2, -1, -1), (1, 2, 2, -1, 0), (1, 2, 2, -1, 1), (1, 2, 2, 0, -1), (1, 2, 2, 0, 0), (1, 2, 2, 1, -1), (2, 2, 0, 0, 0), (2, 1, 0, 0, 0), (2, 1, -2, -1, 1), (2, 1, -2, 0, 0), (2, 1, -2, 0, 1), (2, 1, -2, 1, -1), (2, 1, -2, 1, 0), (2, 1, -2, 1, 1), (2, 1, -1, -2, 1), (2, 1, -1, -1, -1), (2, 1, -1, -1, 0), (2, 1, -1, -1, 1), (2, 1, -1, -1, 2), (2, 1, -1, 0, -1), (2, 1, -1, 0, 0), (2, 1, -1, 0, 1), (2, 1, -1, 1, -2), (2, 1, -1, 1, -1), (2, 1, -1, 1, 0), (2, 1, -1, 1, 1), (2, 1, -1, 2, -1), (2, 1, 0, -2, 0), (2, 1, 0, -2, 1), (2, 1, 0, -1, -1), (2, 1, 0, -1, 0), (2, 1, 0, -1, 1), (2, 1, 0, 0, -2), (2, 1, 0, 0, -1), (2, 1, 0, 0, 1), (2, 1, 0, 1, -2), (2, 1, 0, 1, -1), (2, 1, 0, 1, 0), (2, 1, 1, -2, -1), (2, 1, 1, -2, 0), (2, 1, 1, -2, 1), (2, 1, 1, -1, -2), (2, 1, 1, -1, -1), (2, 1, 1, -1, 0), (2, 1, 1, -1, 1), (2, 1, 1, 0, -2), (2, 1, 1, 0, -1), (2, 1, 1, 0, 0), (2, 1, 1, 1, -2), (2, 1, 1, 1, -1), (2, 1, 2, -1, -1), (2, 2, -2, 0, 1), (2, 2, -2, 1, 0), (2, 2, -2, 1, 1), (2, 2, -1, -1, 0), (2, 2, -1, -1, 1), (2, 2, -1, -1, 2), (2, 2, -1, 0, -1), (2, 2, -1, 0, 0), (2, 2, -1, 0, 1), (2, 2, -1, 0, 2), (2, 2, -1, 1, -1), (2, 2, -1, 1, 0), (2, 2, -1, 1, 1), (2, 2, -1, 2, -1), (2, 2, -1, 2, 0), (2, 2, 0, -2, 1), (2, 2, 0, -1, -1), (2, 2, 0, -1, 0), (2, 2, 0, -1, 1), (2, 2, 0, -1, 2), (2, 2, 0, 0, -1), (2, 2, 0, 0, 1), (2, 2, 0, 1, -2), (2, 2, 0, 1, -1), (2, 2, 0, 1, 0), (2, 2, 0, 1, 1), (2, 2, 0, 2, -1), (2, 2, 1, -2, 0), (2, 2, 1, -2, 1), (2, 2, 1, -1, -1), (2, 2, 1, -1, 0), (2, 2, 1, -1, 1), (2, 2, 1, 0, -2), (2, 2, 1, 0, -1), (2, 2, 1, 0, 0), (2, 2, 1, 0, 1), (2, 2, 1, 1, -2), (2, 2, 1, 1, -1), (2, 2, 1, 1, 0), (2, 2, 2, -1, -1), (2, 2, 2, -1, 0), (2, 2, 2, 0, -1) ``` How can I calculate eigenstates like DOS form here?
sorry for long PES217i
| |