Top Page > Browsing
optical in negative energy range
Date: 2024/12/27 16:56
Name: Debo Hao

Dear Developers,

I wish to examine the optical properties near the Fermi level, which is at -4.74 eV. I set the energy range for cddf to [-6, -4]. However, I noticed that the energy range for the dielectric constant changed to [0, 2] in results. Does OpenMX not allow for the calculation of optical properties in the negative energy range?

Here is my input:
    System.CurrrentDirectory        ./
    System.Name                    G_SiO2
    level.of.stdout                  1
    level.of.fileout                  0
    DATA.PATH                        /public21/soft/openmx/openmx3.9/DFT_DATA19

    Species.Number                    3
    <Definition.of.Atomic.Species
    C    C6.0-s2p2d1      C_PBE19
    O    O6.0-s2p2d1      O_PBE19
    Si    Si7.0-s2p2d1      Si_PBE19
    Definition.of.Atomic.Species>

    Atoms.Number                      26
    Atoms.SpeciesAndCoordinates.Unit  Ang
    <Atoms.SpeciesAndCoordinates
    1    Si    1.3142312    2.2763152    12.7377531    2.00000  2.00000
    2    Si    3.7927045    2.0165266    9.0989625    2.00000  2.00000
    3    Si    2.3284843    -0.0000000    10.9183578    2.00000  2.00000
    4    Si    1.4604699    2.3178967    18.1794389    2.00000  2.00000
    5    Si    3.7927045    2.0165266    14.5571484    2.00000  2.00000
    6    Si    2.3284843    -0.0000000    16.3765438    2.00000  2.00000
    7      C    3.4106475    0.0404958    22.7965512    2.00000  2.00000
    8      C    4.6501895    2.1873297    22.7957019    2.00000  2.00000
    9      C    0.9324401    0.0407801    22.7957553    2.00000  2.00000
    10      C    2.1714645    2.1872021    22.7991940    2.00000  2.00000
    11      C    4.6508711    0.7565388    22.7946115    2.00000  2.00000
    12      C    5.8900815    2.9029264    22.7985738    2.00000  2.00000
    13      C    2.1720658    0.7567947    22.7973331    2.00000  2.00000
    14      C    3.4112183    2.9028407    22.7966389    2.00000  2.00000
    15      O    1.3780026    1.1502775    11.5622925    3.00000  3.00000
    16      O    2.7856416    2.5243178    13.3816878    3.00000  3.00000
    17      O    3.2717759    0.6182465    9.7428972    3.00000  3.00000
    18      O    5.7502492    3.6745952    12.0938188    3.00000  3.00000
    19      O    3.8564760    3.1425643    10.2744235    3.00000  3.00000
    20      O    5.2641149    1.7685240    13.9132141    3.00000  3.00000
    21      O    1.3780026    1.1502775    17.0204784    3.00000  3.00000
    22      O    2.8172641    2.4531964    19.1027381    3.00000  3.00000
    23      O    3.2717759    0.6182465    15.2010831    3.00000  3.00000
    24      O    5.7502492    3.6745952    17.5520047    3.00000  3.00000
    25      O    3.8564760    3.1425643    15.7326094    3.00000  3.00000
    26      O    6.1502639    1.9214096    19.7503431    3.00000  3.00000
    Atoms.SpeciesAndCoordinates>

    Atoms.UnitVectors.Unit            Ang
    <Atoms.UnitVectors
        4.9569467    0.0000000    0.0000000
        2.4784734    4.2928418    0.0000000
        0.0000000    0.0000000    32.2724374
    Atoms.UnitVectors>

    # SCF or Electronic System
    scf.XcType                    GGA-PBE
    scf.SpinPolarization          off
    scf.ElectronicTemperature    300.0
    scf.energycutoff              350.0
    scf.maxIter                  100
    scf.EigenvalueSolver          band
    scf.Kgrid                    4  4  1
    scf.Mixing.Type              rmm-diisk
    scf.Init.Mixing.Weight        0.01
    scf.Min.Mixing.Weight        0.001
    scf.Max.Mixing.Weight        0.020
    scf.Mixing.History            20
    scf.Mixing.StartPulay        7
    scf.criterion                1.0e-10

    # MD or Geometry Optimization
    MD.Type                      Nomd
    MD.Opt.DIIS.History  6    # default=3
    MD.Opt.StartDIIS      7    # default=5
    MD.Opt.EveryDIIS      6    # default=10
    MD.maxIter                    400
    MD.Opt.criterion              0.0001
    <MD.Fixed.XYZ
    1  1 1 1
    2  1 1 1
    3  1 1 1
    4  0 0 0
    5  1 1 1
    6  1 1 1
    7  0 0 0
    8  0 0 0
    9  0 0 0
    10  0 0 0
    11  0 0 0
    12  0 0 0
    13  0 0 0
    14  0 0 0
    15  1 1 1
    16  1 1 1
    17  1 1 1
    18  1 1 1
    19  1 1 1
    20  1 1 1
    21  1 1 1
    22  0 0 0
    23  1 1 1
    24  1 1 1
    25  1 1 1
    26  0 0 0
    MD.Fixed.XYZ>

# DOS and PDOS
Dos.fileout                  off      # on|off, default=off
Dos.Erange              -15.0  25.0  # default = -20 20
Dos.Kgrid                600 1  1      # default = Kgrid1 Kgrid2 Kgrid3
DosGauss.fileout      off
DosGauss.Num.Mesh    4000
DosGauss.Width      0.01

# Band
Band.dispersion              on
Band.Nkpath                  9
<Band.kpath
  19  0.000000 0.000000 0.000000  0.500000 0.000000 0.000000  G M
  11  0.500000 0.000000 0.000000  0.333333 -0.333333 0.000000  M K
  22  0.333333 -0.333333 0.000000  0.000000 0.000000 0.000000  K G
  3  0.000000 0.000000 0.000000  0.000000 0.000000 -0.500000  G A
  19  0.000000 0.000000 -0.500000  0.500000 0.000000 -0.500000  A L
  11  0.500000 0.000000 -0.500000  0.333333 -0.333333 -0.500000  L H
  22  0.333333 -0.333333 -0.500000  0.000000 0.000000 -0.500000  H A
  3  0.500000 0.000000 -0.500000  0.500000 0.000000 0.000000  L M
  3  0.333333 -0.333333 0.000000  0.333333 -0.333333 -0.500000  K H
Band.kpath>

#
# CDDF
#

CDDF.start                        on    # default = off , on|off
CDDF.FWHM                          0.2    # default =  0.2 eV
CDDF.maximum_energy                -4    # default = 10.0 eV
CDDF.minimum_energy                -6    # default =  0.0 eV
CDDF.frequency.grid.total_number  10000  # default = 10000 grids
CDDF.material_type                1
CDDF.Kgrid                      20 20 1 

Looking forward to your reply.

Regards,
Debo Hao

メンテ
Page: [1]

Re: optical in negative energy range ( No.1 )
Date: 2024/12/30 05:31
Name: YT Lee

(1)

The energy difference (dE) of an optical transition between two states can be positive or negative.

According to the Kubo-Greenwood formula, regardless of whether dE is negative or positive, the energy range of the optical conductivity or dielectric function should not be negative.

(2)

In optical calculations using OpenMX, the scale of energy range doesn't correspond to eigenstates.

You do not need to check the Fermi level because optical transitions occur between two states.

Best regards,
YT Lee
メンテ
Re: optical in negative energy range ( No.2 )
Date: 2024/12/30 10:48
Name: Debo Hao

Dear YT Lee,

Thank you very much for your reply.
So, are there any other ways to get the optical properties near the Fermi level with OpenMX?
メンテ
Re: optical in negative energy range ( No.3 )
Date: 2025/01/02 14:36
Name: YT Lee

1. Usually, I check the electronic band structure of a material first to confirm states at a k-point close to the Fermi level.
Based on the electronic band structure obtained, I can guess where the peaks should appear because optical transitions occur between two states.
(However, it is possible that an optical transition between two states is not allowed (forbidden), or not a sharp peak.)

2. After calculating the optical conductivity, I will try to connect the peaks in the optical conductivity to the electronic band structure of the material.

3. In the energy range of optical conductivity, it is the energy difference of an optical transition between two states.
For example, at the gamma point, state 1 is at -0.2 eV and state 2 is at 0.8 eV. (if Fermi level is set to be zero.)
There may be a weak (or sharp) peak at 1 eV (i.e. 0.8 - (-0.2) eV).

4. In your case, the energy range is set to be from 0 to 2 eV (i.e., -6 eV ~ -4 eV in your input).
You may check how many states exist from -2 eV to 2 eV at different k points (when Fermi level is set to be zero.)

5. Optical transitions usually take place near the Fermi level because of the Fermi-Dirac distribution in the Kubo-Greenwood formula ( listed in Physical Review B 102 (7), 075143 (2020), Physical Review B 98 (11), 115115 (2018), and relevant Journal papers ).

6. Absorption coefficients can be obtained when extinction coefficients (imaginary part of dielectric function) are calculated.

Best regards,
YT Lee
メンテ
Re: optical in negative energy range ( No.4 )
Date: 2025/01/03 14:46
Name: Debo Hao

Dear Prof. Lee,

Thank you very much for your patient and accurate reply.
Based on the literature and detailed explanations provided, I understand the relationship between band electron transitions and the position of light absorption peaks. However, I still have a few questions that require your assistance.

1. Is the calculation of the optical absorption coefficient in OpenMX as follows: optical conductivity -> dielectric constant -> extinction coefficient -> optical absorption coefficient?

2. A single optical absorption peak may correspond to many transition states. For example, a peak with a transition energy of 1 eV might correspond to transitions state from -0.2 eV to 0.8 eV at Gamma Point, or from -0.3 eV to 0.7 eV at M Point. How can I determine which electron transitions correspond to which peak clearly? And what are the percentage contributions of these transition states?

3. How does OpenMX consider intraband transitions?

4. Does OpenMX have the functionality for partial optical conductivity as mentioned in the article (Physical Review B 102 (7), 075143 (2020))?

Best regards,
Debo Hao
メンテ
Re: optical in negative energy range ( No.5 )
Date: 2025/01/06 19:51
Name: Yung-Ting Lee

1. Please check
(1) https://www.openmx-square.org/openmx_man3.9/node198.html ,
(2) Some optical properties can be found in "Solid State Physics" by Ashcroft and Mermin,
(3) Optical conductivity in wiki : https://www.openmx-square.org/openmx_man3.9/node198.html ,

2.
(1) One may analyze electronic band structure of a material and corresponding electronic states first.
Then, one can modify codes to project certain optical transition(s) for analysis.

(2) It is hard to know a contribution of an optical transition in a peak before DFT calculations for a specific material.

3. Currently, the approach only includes optical transitions at the same k-point, not from k to k'.
I did not derive this Kubo-Greenwood formula for optical transitions from k to k'.
If one wishes to calculate optical transitions of a material from k to k', some programs have this functionality.

4. The functionality of partial optical conductivity is not included in OpenMX at present.

Best regards,
YT Lee
メンテ
Re: optical in negative energy range ( No.6 )
Date: 2025/01/07 16:24
Name: Debo Hao

Dear Prof. Lee,

Thank you for your reply.
I already know about these issues.

Best regards,
Debo Hao
メンテ

Page: [1]

Thread Title (must) Move the thread to the top
Your Name (must)
E-Mail (must)
URL
Password (used in modification of the submitted text)
Comment (must)

   Save Cookie