Build openmx-3.962 with AOCC compiler error |
- Date: 2025/04/14 04:46
- Name: hlajungo
<hlajungo@gmail.com>
- I am trying to build openmx with amd tool chain (aocc compiler + aocl library), I want to ask is it supported?
I build openmx succeccfully with following makefile setting ``` CC = mpicc -Dkcomp -O3 -march=znver2 -mtune=znver2 -mfma -mavx2 -fomit-frame-pointer -fopenmp -fPIC FC = mpif90 -Dkcomp -O3 -march=znver2 -mtune=znver2 -mfma -mavx2 -fomit-frame-pointer -fopenmp \ -fallow-argument-mismatch -fPIC
LIB = -lscalapack -lflame -lblis-mt -lblis \ -lmpi_mpifh -lmpi_usempif08 -lmpi_usempi_ignore_tkr -lmpi \ -lfftw3_mpi -lfftw3_omp -lfftw3 \ -lgfortran -lamdlibm -fopenmp \ -Wl,--allow-multiple-definition -Wl,--allow-shlib-undefined ``` and these packages. ``` aocc/5.0.0 aocl/5.0 ucx/1.18.0 gcc/10.2.0 (provide gfortran) openmpi/4.1.6 ```
But when I trying to run `mpirun -n 8 ./openmx Methane.dat`
``` ******************************************************* ******************************************************* Welcome to OpenMX Ver. 3.9.23 Copyright (C), 2002-2019, T. Ozaki OpenMX comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under the constitution of the GNU-GPL. ******************************************************* *******************************************************
<Input_std> Your input file was normally read. <Input_std> The system includes 2 species and 5 atoms.
******************************************************* PAO and VPS *******************************************************
<SetPara_DFT> PAOs of species H were normally found. <SetPara_DFT> PAOs of species C were normally found. <SetPara_DFT> VPSs of species H were normally found. H_PBE19.vps is j-dependent. In case of scf.SpinOrbit.Coupling=off, j-dependent pseudo potentials are averaged by j-degeneracy, which corresponds to a scalar relativistic treatment. <SetPara_DFT> VPSs of species C were normally found. C_PBE19.vps is j-dependent. In case of scf.SpinOrbit.Coupling=off, j-dependent pseudo potentials are averaged by j-degeneracy, which corresponds to a scalar relativistic treatment.
******************************************************* Fourier transform of PAO and projectors of VNL *******************************************************
<FT_PAO> Fourier transform of pseudo atomic orbitals <FT_NLP> Fourier transform of non-local projectors <FT_ProExpn_VNA> Fourier transform of VNA separable projectors <FT_VNA> Fourier transform of VNA potentials <FT_ProductPAO> Fourier transform of product of PAOs
******************************************************* Allocation of atoms to processors at MD_iter= 1 *******************************************************
proc = 0 # of atoms= 1 estimated weight= 1.00000 proc = 1 # of atoms= 1 estimated weight= 1.00000 proc = 2 # of atoms= 1 estimated weight= 1.00000 proc = 3 # of atoms= 1 estimated weight= 1.00000 proc = 4 # of atoms= 1 estimated weight= 1.00000 proc = 5 # of atoms= 0 estimated weight= 0.00000 proc = 6 # of atoms= 0 estimated weight= 0.00000 proc = 7 # of atoms= 0 estimated weight= 0.00000
******************************************************* Analysis of neighbors and setting of grids *******************************************************
TFNAN= 20 Average FNAN= 4.00000 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 1 ct_AN= 1 FNAN SNAN 4 0 <truncation> CpyCell= 1 ct_AN= 2 FNAN SNAN 4 0 <truncation> CpyCell= 1 ct_AN= 3 FNAN SNAN 4 0 <truncation> CpyCell= 1 ct_AN= 4 FNAN SNAN 4 0 <truncation> CpyCell= 1 ct_AN= 5 FNAN SNAN 4 0 TFNAN= 20 Average FNAN= 4.00000 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 4 0 <truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 4 0 <truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 4 0 <truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 4 0 <truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 4 0 TFNAN= 20 Average FNAN= 4.00000 TSNAN= 0 Average SNAN= 0.00000 <truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 4 0 <truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 4 0 <truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 4 0 <truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 4 0 <truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 4 0 <Check_System> The system is molecule. lattice vectors (bohr) A = 18.897259885789, 0.000000000000, 0.000000000000 B = 0.000000000000, 18.897259885789, 0.000000000000 C = 0.000000000000, 0.000000000000, 18.897259885789 reciprocal lattice vectors (bohr^-1) RA = 0.332491871581, 0.000000000000, 0.000000000000 RB = 0.000000000000, 0.332491871581, 0.000000000000 RC = 0.000000000000, 0.000000000000, 0.332491871581 Grid_Origin -9.300995100037 -9.300995100037 -9.300995100037 Cell_Volume = 6748.333037104149 (Bohr^3) GridVol = 0.025742847584 (Bohr^3) Grid_Origin -9.300995100037 -9.300995100037 -9.300995100037 Cell_Volume = 6748.333037104149 (Bohr^3) GridVol = 0.025742847584 (Bohr^3) <UCell_Box> Info. of cutoff energy and num. of grids lattice vectors (bohr) A = 18.897259885789, 0.000000000000, 0.000000000000 B = 0.000000000000, 18.897259885789, 0.000000000000 C = 0.000000000000, 0.000000000000, 18.897259885789 reciprocal lattice vectors (bohr^-1) RA = 0.332491871581, 0.000000000000, 0.000000000000 RB = 0.000000000000, 0.332491871581, 0.000000000000 RC = 0.000000000000, 0.000000000000, 0.332491871581 Required cutoff energy (Ryd) for 3D-grids = 120.0000 Used cutoff energy (Ryd) for 3D-grids = 113.2041, 113.2041, 113.2041 Num. of grids of a-, b-, and c-axes = 64, 64, 64 Grid_Origin -9.300995100037 -9.300995100037 -9.300995100037 Cell_Volume = 6748.333037104149 (Bohr^3) GridVol = 0.025742847584 (Bohr^3) Cell vectors (bohr) of the grid cell (gtv) gtv_a = 0.295269685715, 0.000000000000, 0.000000000000 gtv_b = 0.000000000000, 0.295269685715, 0.000000000000 gtv_c = 0.000000000000, 0.000000000000, 0.295269685715 |gtv_a| = 0.295269685715 |gtv_b| = 0.295269685715 |gtv_c| = 0.295269685715 Num. of grids overlapping with atom 1 = 20336 Num. of grids overlapping with atom 2 = 20346 Num. of grids overlapping with atom 3 = 20346 Num. of grids overlapping with atom 4 = 20346 Num. of grids overlapping with atom 5 = 20346
******************************************************* SCF calculation at MD = 1 *******************************************************
<MD= 1> Calculation of the overlap matrix <MD= 1> Calculation of the nonlocal matrix <MD= 1> Calculation of the VNA projector matrix
******************* MD= 1 SCF= 1 ******************* <Poisson> Poisson's equation using FFT... <Cluster> Solving the eigenvalue problem... 1 C MulP -nan -nan sum -nan 2 H MulP -nan -nan sum -nan 3 H MulP -nan -nan sum -nan 4 H MulP -nan -nan sum -nan 5 H MulP -nan -nan sum -nan Sum of MulP: up = -nan down = -nan total= -nan ideal(neutral)= 8.00000 <DFT> Total Spin Moment (muB) = -nan <DFT> Mixing_weight= 0.200000000000 <DFT> Uele = -nan dUele = 1.000000000000 <DFT> NormRD = 1.000000000000 Criterion = 0.000000000100
******************* MD= 1 SCF= 2 ******************* <Poisson> Poisson's equation using FFT... <Set_Hamiltonian> Hamiltonian matrix for VNA+dVH+Vxc... <Cluster> Solving the eigenvalue problem... 1 C MulP -nan -nan sum -nan 2 H MulP -nan -nan sum -nan 3 H MulP -nan -nan sum -nan 4 H MulP -nan -nan sum -nan 5 H MulP -nan -nan sum -nan Sum of MulP: up = -nan down = -nan total= -nan ideal(neutral)= 8.00000 <DFT> Total Spin Moment (muB) = -nan <DFT> Mixing_weight= 0.200000000000 <DFT> Uele = -nan dUele = nan <DFT> NormRD = nan Criterion = 0.000000000100
******************************************************* Computational times (s) at MD = 1 *******************************************************
DFT in total = 1.62580
Set_OLP_Kin = 0.03440 Set_Nonlocal = 0.01761 Set_ProExpn_VNA = 0.08201 Set_Hamiltonian = 0.69188 Poisson = 0.33737 diagonalization = 0.09697 Mixing_DM = 0.00953 Force = 0.01528 Total_Energy = 0.05745 Set_Aden_Grid = 0.03306 Set_Orbitals_Grid = 0.00997 Set_Density_Grid = 0.13632 RestartFileDFT = 0.01717 Mulliken_Charge = 0.00432 FFT(2D)_Density = 0.00000 The calculation was terminated due to the illegal SCF calculation. ```
There are full of `nan` and wrong output, and there are no information on internet I can found.

| |