Choice of the double-counting

A double-counting (dc) correction is common for any 'embedding' methods such as DFT+$U$. When using scf.DFTU.Type=2, the dc term should be specified by the following keyword:
  scf.dc.Type                 cFLL	   # sFLL|sAMF|cFLL|cAMF, default=sFLL
In the above case, the 'cFLL' dc-term is chosen. In the specification of 'sFLL', 'sAMF', 'cFLL', and 'cAMF', 'c' and 's' mean the density functional scheme within charge (spin-unpolarized) density and spin density LDA/GGA, respectively, and 'FLL' and 'AMF' correspond to a fully localized limit (FLL) and around mean-field (AMF) for the treatment of the double-counting term. For the detailed definitions and behaviors of each scheme, please refer to Ref. [21,22]. Users should keep in mind that when cFLL or cAMF dc-term is chosen, spin-density exchange-correlation energy of LDA (or GGA) is not taken into account during the SCF loop [21,22]. scf.dc.Type=sFLL corresponds to the form proposed by Liechtenstein et al. [26]. Note also that when using a simplified scheme (scf.DFTU.Type=1), sFLL dc-term is implicit in its functional form.

Users can check what kinds of DFT+$U$ scheme has been specified with the following message before SCF loop begins in the standard output:

  For scf.DFTU.Type=1,

  *******************************************************
                     DFT+U Type and DC
  *******************************************************
                scf.DFTU.Type: 1(Simplified)   


  For scf.DFTU.Type=2 and scf.dc.Type=cFLL,

  *******************************************************
                     DFT+U Type and DC
  *******************************************************
       scf.DFTU.Type: 2(General)   scf.dc.Type: cFLL

As an example of the DFT+$U$ calculation, the density of states for NiO bulk is shown in Fig. 34 for cases with $U=5$ eV and two different $J$ values (0.5 and 1.0 eV) for $d$-orbitals of Ni.

Figure 34: The up-spin density of states of NiO by (a) LDA, (b) DFT+$U$ with 'scf.dc.Type=cFLL', and (c) DFT+$U$ with 'scf.dc.Type=sFLL'. $U$ is fixed to 5 eV and $J=0.5$ eV for blue lines and 1.0 eV for red lines.
\includegraphics[width=1.0\textwidth, angle=0]{DFTU_FIG1.eps}


The input files, `NiO-cFLL.dat' and `NiO-sFLL.dat' can be found in the directory `work'. We can see that the gap increases due to the introduction of $U$ on the $d$-orbitals as well as the different behaviors of varying $J$ depending on the choice scf.dc.Type.

The occupation number for each orbital is output to the file 'System.Name.out' in the same form as that of decomposed Mulliken populations which starts from the title 'Occupation Number in LDA+U', e.g., NiO with 'scf.dc.Type=cFLL' of $U=5$ eV and $J=0.5$ eV, as follows:

***********************************************************
***********************************************************
       Occupation Number in LDA+U and Constraint DFT

    Eigenvalues and eigenvectors for a matrix consisting
           of occupation numbers on each site
***********************************************************
***********************************************************

    1   Ni

     spin= 0

  Sum =  8.708572022602

                    1       2       3       4       5       6       7       8    
  Individual     -0.0041  0.0012  0.0012  0.0022  0.0040  0.0040  0.0044  0.0064 

  s           0   0.1792 -0.0008 -0.0000  0.0015 -0.0000  0.0003  0.0124 -0.0000 
  s           1  -0.9756  0.0052  0.0000  0.0026  0.0000 -0.0041 -0.1251  0.0000 
  px          0   0.0006  0.0007 -0.0012 -0.0123  0.0003  0.0006 -0.0033 -0.0000 
  py          0   0.0006 -0.0013 -0.0000 -0.0122  0.0000  0.0000 -0.0033  0.0000 
  pz          0   0.0006  0.0007  0.0012 -0.0123 -0.0003  0.0006 -0.0033  0.0000 
  px          1   0.0091  0.0053 -0.0095 -0.0867  0.0205  0.0152 -0.0206  0.0026 
  py          1   0.0093 -0.0116 -0.0000 -0.0870 -0.0000 -0.0207 -0.0236 -0.0000 
  pz          1   0.0091  0.0052  0.0095 -0.0867 -0.0205  0.0152 -0.0206 -0.0026 
  d3z^2-r^2   0   0.0002  0.0348  0.0604 -0.0000 -0.0020  0.0012  0.0001 -0.0005 
  dx^2-y^2    0   0.0004  0.0604 -0.0348 -0.0000  0.0011  0.0020  0.0001  0.0003 
  dxy         0  -0.0001  0.0007  0.0012  0.0151  0.0367 -0.0218  0.0097 -0.0003 
  dxz         0  -0.0006 -0.0015 -0.0000  0.0167  0.0000  0.0417  0.0112  0.0000 
  dyz         0  -0.0001  0.0007 -0.0012  0.0151 -0.0367 -0.0218  0.0097  0.0003 
  d3z^2-r^2   1  -0.0025 -0.4966 -0.8626 -0.0006  0.0295 -0.0174 -0.0006  0.0056 
  dx^2-y^2    1  -0.0042 -0.8625  0.4967 -0.0010 -0.0170 -0.0301 -0.0010 -0.0033 
  dxy         1   0.0136 -0.0160 -0.0276 -0.5343 -0.7016  0.4220 -0.1326  0.0055 
  dxz         1   0.0225  0.0332  0.0000 -0.5657 -0.0000 -0.7918 -0.1607 -0.0000 
  dyz         1   0.0136 -0.0161  0.0275 -0.5343  0.7016  0.4219 -0.1325 -0.0055 
  f5z^2-3r^2  0  -0.0029  0.0032  0.0065 -0.0804 -0.0514  0.0334 -0.0282 -0.0069 
  f5xz^2-xr^2 0   0.0017 -0.0304 -0.0148  0.0467 -0.0113 -0.0653  0.0174 -0.4673 
  f5yz^2-yr^2 0   0.0013  0.0057 -0.0294  0.0479  0.0517  0.0341  0.0272  0.4428 
  fzx^2-zy^2  0  -0.0001 -0.0360  0.0237 -0.0031 -0.0256 -0.0567  0.0001  0.5857 
  fxyz        0   0.1218 -0.0003 -0.0000  0.2573  0.0000  0.0172 -0.9581  0.0000 
  fx^3-3*xy^2 0  -0.0023 -0.0195 -0.0197 -0.0655  0.0563 -0.0083 -0.0223 -0.3532 
  f3yx^2-y^3  0   0.0017  0.0072  0.0228  0.0618 -0.0401  0.0441  0.0352 -0.3430 

                    9      10      11      12      13      14      15      16    
  Individual      0.0116  0.0117  0.0207  0.0207  0.0238  0.0972  0.1112  0.1114 

  s           0  -0.0003 -0.0000  0.0000 -0.0005 -0.0075 -0.0206 -0.0000 -0.0000 
  s           1   0.0001  0.0000  0.0000 -0.0013  0.0076  0.0102  0.0000 -0.0000 
  px          0  -0.0005  0.0006 -0.0024  0.0014  0.0043 -0.0270  0.0291  0.0170 
  py          0   0.0006  0.0000  0.0000 -0.0027  0.0044 -0.0279 -0.0000 -0.0338 
  pz          0  -0.0005 -0.0006  0.0024  0.0014  0.0043 -0.0270 -0.0291  0.0171 
  px          1   0.0229 -0.0402  0.1442 -0.0832 -0.1073  0.5479 -0.6901 -0.4038 
  py          1  -0.0437  0.0000 -0.0005  0.1632 -0.1127  0.5594  0.0003  0.7916 
  pz          1   0.0229  0.0402 -0.1437 -0.0841 -0.1073  0.5478  0.6898 -0.4043 
  d3z^2-r^2   0   0.0053  0.0093  0.0012  0.0006 -0.0001  0.0003 -0.0202  0.0115 
  dx^2-y^2    0   0.0092 -0.0053 -0.0007  0.0011 -0.0002  0.0006  0.0117  0.0199 
  dxy         0  -0.0033 -0.0056 -0.0049 -0.0032 -0.0237  0.0916  0.0095 -0.0067 
  dxz         0   0.0069 -0.0000 -0.0000  0.0054 -0.0236  0.0915  0.0000  0.0102 
  dyz         0  -0.0033  0.0056  0.0049 -0.0031 -0.0237  0.0916 -0.0095 -0.0067 
  d3z^2-r^2   1  -0.0241 -0.0404 -0.0230 -0.0138  0.0011 -0.0001  0.0089 -0.0052 
  dx^2-y^2    1  -0.0418  0.0233  0.0134 -0.0238  0.0018 -0.0002 -0.0051 -0.0090 
  dxy         1   0.0224  0.0367  0.0645  0.0399  0.1012 -0.0657 -0.0086  0.0058 
  dxz         1  -0.0489  0.0000  0.0002 -0.0737  0.1010 -0.0652 -0.0000 -0.0096 
  dyz         1   0.0224 -0.0367 -0.0648  0.0395  0.1011 -0.0657  0.0086  0.0058 
  f5z^2-3r^2  0   0.0928  0.1648 -0.6676 -0.3997 -0.5498 -0.1226 -0.1505  0.0868 
  f5xz^2-xr^2 0   0.4854  0.4030 -0.3328  0.3674  0.3359  0.0744 -0.0944 -0.0506 
  f5yz^2-yr^2 0   0.1112  0.6352  0.1497 -0.4674  0.3502  0.0772 -0.0023  0.1046 
  fzx^2-zy^2  0   0.6859 -0.3821 -0.0991  0.1577 -0.0010 -0.0008  0.0028  0.0032 
  fxyz        0   0.0052  0.0000  0.0000 -0.0109  0.0195  0.0064  0.0000  0.0007 
  fx^3-3*xy^2 0   0.4934  0.1037  0.5899 -0.2158 -0.4352 -0.0974  0.1173  0.0705 
  f3yx^2-y^3  0   0.1435 -0.4920 -0.1130 -0.6043  0.4520  0.0997  0.0019  0.1351 

                   17      18      19      20      21      22      23      24    
  Individual      0.2342  0.9866  0.9949  0.9950  1.0070  1.0070  1.0101  1.0101 

  s           0   0.9835 -0.0030 -0.0001  0.0000 -0.0000  0.0001  0.0003  0.0000 
  s           1   0.1796 -0.0015 -0.0000  0.0000  0.0000 -0.0000 -0.0000 -0.0000 
  px          0  -0.0023 -0.5138 -0.3934 -0.6753 -0.0494 -0.0317  0.1133 -0.2016 
  py          0  -0.0021 -0.5218  0.7787 -0.0000 -0.0000  0.0587 -0.2264 -0.0000 
  pz          0  -0.0023 -0.5138 -0.3933  0.6753  0.0494 -0.0317  0.1132  0.2017 
  px          1   0.0092 -0.0625 -0.0195 -0.0329  0.0012  0.0006 -0.0049  0.0083 
  py          1   0.0095 -0.0631  0.0376 -0.0000  0.0000 -0.0016  0.0097  0.0000 
  pz          1   0.0092 -0.0625 -0.0195  0.0329 -0.0012  0.0006 -0.0049 -0.0083 
  ..... 
  ...
The eigenvalues of the occupation number matrix of each atomic site correspond to the occupation number to each local state given by the eigenvector.