scf.DFTU.Type=2
, the dc term should be specified by the following keyword:
scf.dc.Type cFLL # sFLL|sAMF|cFLL|cAMF, default=sFLLIn the above case, the 'cFLL' dc-term is chosen. In the specification of 'sFLL', 'sAMF', 'cFLL', and 'cAMF', 'c' and 's' mean the density functional scheme within charge (spin-unpolarized) density and spin density LDA/GGA, respectively, and 'FLL' and 'AMF' correspond to a fully localized limit (FLL) and around mean-field (AMF) for the treatment of the double-counting term. For the detailed definitions and behaviors of each scheme, please refer to Ref. [21,22]. Users should keep in mind that when
cFLL
or
cAMF
dc-term is chosen, spin-density exchange-correlation energy of LDA (or GGA) is not taken
into account during the SCF loop [21,22]. scf.dc.Type=sFLL
corresponds to the form proposed
by Liechtenstein et al. [26].
Note also that when using a simplified scheme (scf.DFTU.Type=1
), sFLL
dc-term is
implicit in its functional form.
Users can check what kinds of DFT+ scheme has been specified with the following message before SCF loop begins in the standard output:
For scf.DFTU.Type=1, ******************************************************* DFT+U Type and DC ******************************************************* scf.DFTU.Type: 1(Simplified) For scf.DFTU.Type=2 and scf.dc.Type=cFLL, ******************************************************* DFT+U Type and DC ******************************************************* scf.DFTU.Type: 2(General) scf.dc.Type: cFLL
As an example of the DFT+ calculation, the density of states for NiO bulk is shown in Fig. 34
for cases with eV and two different values (0.5 and 1.0 eV) for -orbitals of Ni.
scf.dc.Type
.
The occupation number for each orbital is output to the file 'System.Name.out' in the same form as that of decomposed Mulliken populations which starts from the title 'Occupation Number in LDA+U', e.g., NiO with 'scf.dc.Type=cFLL' of eV and eV, as follows:
*********************************************************** *********************************************************** Occupation Number in LDA+U and Constraint DFT Eigenvalues and eigenvectors for a matrix consisting of occupation numbers on each site *********************************************************** *********************************************************** 1 Ni spin= 0 Sum = 8.708572022602 1 2 3 4 5 6 7 8 Individual -0.0041 0.0012 0.0012 0.0022 0.0040 0.0040 0.0044 0.0064 s 0 0.1792 -0.0008 -0.0000 0.0015 -0.0000 0.0003 0.0124 -0.0000 s 1 -0.9756 0.0052 0.0000 0.0026 0.0000 -0.0041 -0.1251 0.0000 px 0 0.0006 0.0007 -0.0012 -0.0123 0.0003 0.0006 -0.0033 -0.0000 py 0 0.0006 -0.0013 -0.0000 -0.0122 0.0000 0.0000 -0.0033 0.0000 pz 0 0.0006 0.0007 0.0012 -0.0123 -0.0003 0.0006 -0.0033 0.0000 px 1 0.0091 0.0053 -0.0095 -0.0867 0.0205 0.0152 -0.0206 0.0026 py 1 0.0093 -0.0116 -0.0000 -0.0870 -0.0000 -0.0207 -0.0236 -0.0000 pz 1 0.0091 0.0052 0.0095 -0.0867 -0.0205 0.0152 -0.0206 -0.0026 d3z^2-r^2 0 0.0002 0.0348 0.0604 -0.0000 -0.0020 0.0012 0.0001 -0.0005 dx^2-y^2 0 0.0004 0.0604 -0.0348 -0.0000 0.0011 0.0020 0.0001 0.0003 dxy 0 -0.0001 0.0007 0.0012 0.0151 0.0367 -0.0218 0.0097 -0.0003 dxz 0 -0.0006 -0.0015 -0.0000 0.0167 0.0000 0.0417 0.0112 0.0000 dyz 0 -0.0001 0.0007 -0.0012 0.0151 -0.0367 -0.0218 0.0097 0.0003 d3z^2-r^2 1 -0.0025 -0.4966 -0.8626 -0.0006 0.0295 -0.0174 -0.0006 0.0056 dx^2-y^2 1 -0.0042 -0.8625 0.4967 -0.0010 -0.0170 -0.0301 -0.0010 -0.0033 dxy 1 0.0136 -0.0160 -0.0276 -0.5343 -0.7016 0.4220 -0.1326 0.0055 dxz 1 0.0225 0.0332 0.0000 -0.5657 -0.0000 -0.7918 -0.1607 -0.0000 dyz 1 0.0136 -0.0161 0.0275 -0.5343 0.7016 0.4219 -0.1325 -0.0055 f5z^2-3r^2 0 -0.0029 0.0032 0.0065 -0.0804 -0.0514 0.0334 -0.0282 -0.0069 f5xz^2-xr^2 0 0.0017 -0.0304 -0.0148 0.0467 -0.0113 -0.0653 0.0174 -0.4673 f5yz^2-yr^2 0 0.0013 0.0057 -0.0294 0.0479 0.0517 0.0341 0.0272 0.4428 fzx^2-zy^2 0 -0.0001 -0.0360 0.0237 -0.0031 -0.0256 -0.0567 0.0001 0.5857 fxyz 0 0.1218 -0.0003 -0.0000 0.2573 0.0000 0.0172 -0.9581 0.0000 fx^3-3*xy^2 0 -0.0023 -0.0195 -0.0197 -0.0655 0.0563 -0.0083 -0.0223 -0.3532 f3yx^2-y^3 0 0.0017 0.0072 0.0228 0.0618 -0.0401 0.0441 0.0352 -0.3430 9 10 11 12 13 14 15 16 Individual 0.0116 0.0117 0.0207 0.0207 0.0238 0.0972 0.1112 0.1114 s 0 -0.0003 -0.0000 0.0000 -0.0005 -0.0075 -0.0206 -0.0000 -0.0000 s 1 0.0001 0.0000 0.0000 -0.0013 0.0076 0.0102 0.0000 -0.0000 px 0 -0.0005 0.0006 -0.0024 0.0014 0.0043 -0.0270 0.0291 0.0170 py 0 0.0006 0.0000 0.0000 -0.0027 0.0044 -0.0279 -0.0000 -0.0338 pz 0 -0.0005 -0.0006 0.0024 0.0014 0.0043 -0.0270 -0.0291 0.0171 px 1 0.0229 -0.0402 0.1442 -0.0832 -0.1073 0.5479 -0.6901 -0.4038 py 1 -0.0437 0.0000 -0.0005 0.1632 -0.1127 0.5594 0.0003 0.7916 pz 1 0.0229 0.0402 -0.1437 -0.0841 -0.1073 0.5478 0.6898 -0.4043 d3z^2-r^2 0 0.0053 0.0093 0.0012 0.0006 -0.0001 0.0003 -0.0202 0.0115 dx^2-y^2 0 0.0092 -0.0053 -0.0007 0.0011 -0.0002 0.0006 0.0117 0.0199 dxy 0 -0.0033 -0.0056 -0.0049 -0.0032 -0.0237 0.0916 0.0095 -0.0067 dxz 0 0.0069 -0.0000 -0.0000 0.0054 -0.0236 0.0915 0.0000 0.0102 dyz 0 -0.0033 0.0056 0.0049 -0.0031 -0.0237 0.0916 -0.0095 -0.0067 d3z^2-r^2 1 -0.0241 -0.0404 -0.0230 -0.0138 0.0011 -0.0001 0.0089 -0.0052 dx^2-y^2 1 -0.0418 0.0233 0.0134 -0.0238 0.0018 -0.0002 -0.0051 -0.0090 dxy 1 0.0224 0.0367 0.0645 0.0399 0.1012 -0.0657 -0.0086 0.0058 dxz 1 -0.0489 0.0000 0.0002 -0.0737 0.1010 -0.0652 -0.0000 -0.0096 dyz 1 0.0224 -0.0367 -0.0648 0.0395 0.1011 -0.0657 0.0086 0.0058 f5z^2-3r^2 0 0.0928 0.1648 -0.6676 -0.3997 -0.5498 -0.1226 -0.1505 0.0868 f5xz^2-xr^2 0 0.4854 0.4030 -0.3328 0.3674 0.3359 0.0744 -0.0944 -0.0506 f5yz^2-yr^2 0 0.1112 0.6352 0.1497 -0.4674 0.3502 0.0772 -0.0023 0.1046 fzx^2-zy^2 0 0.6859 -0.3821 -0.0991 0.1577 -0.0010 -0.0008 0.0028 0.0032 fxyz 0 0.0052 0.0000 0.0000 -0.0109 0.0195 0.0064 0.0000 0.0007 fx^3-3*xy^2 0 0.4934 0.1037 0.5899 -0.2158 -0.4352 -0.0974 0.1173 0.0705 f3yx^2-y^3 0 0.1435 -0.4920 -0.1130 -0.6043 0.4520 0.0997 0.0019 0.1351 17 18 19 20 21 22 23 24 Individual 0.2342 0.9866 0.9949 0.9950 1.0070 1.0070 1.0101 1.0101 s 0 0.9835 -0.0030 -0.0001 0.0000 -0.0000 0.0001 0.0003 0.0000 s 1 0.1796 -0.0015 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 px 0 -0.0023 -0.5138 -0.3934 -0.6753 -0.0494 -0.0317 0.1133 -0.2016 py 0 -0.0021 -0.5218 0.7787 -0.0000 -0.0000 0.0587 -0.2264 -0.0000 pz 0 -0.0023 -0.5138 -0.3933 0.6753 0.0494 -0.0317 0.1132 0.2017 px 1 0.0092 -0.0625 -0.0195 -0.0329 0.0012 0.0006 -0.0049 0.0083 py 1 0.0095 -0.0631 0.0376 -0.0000 0.0000 -0.0016 0.0097 0.0000 pz 1 0.0092 -0.0625 -0.0195 0.0329 -0.0012 0.0006 -0.0049 -0.0083 ..... ...The eigenvalues of the occupation number matrix of each atomic site correspond to the occupation number to each local state given by the eigenvector.