scf.DFTU.Type=2, the dc term should be specified by the following keyword:
scf.dc.Type cFLL # sFLL|sAMF|cFLL|cAMF, default=sFLLIn the above case, the 'cFLL' dc-term is chosen. In the specification of 'sFLL', 'sAMF', 'cFLL', and 'cAMF', 'c' and 's' mean the density functional scheme within charge (spin-unpolarized) density and spin density LDA/GGA, respectively, and 'FLL' and 'AMF' correspond to a fully localized limit (FLL) and around mean-field (AMF) for the treatment of the double-counting term. For the detailed definitions and behaviors of each scheme, please refer to Ref. [21,22]. Users should keep in mind that when
cFLL or
cAMF dc-term is chosen, spin-density exchange-correlation energy of LDA (or GGA) is not taken
into account during the SCF loop [21,22]. scf.dc.Type=sFLL corresponds to the form proposed
by Liechtenstein et al. [26].
Note also that when using a simplified scheme (scf.DFTU.Type=1), sFLL dc-term is
implicit in its functional form.
Users can check what kinds of DFT+
scheme has been specified with the following message before
SCF loop begins in the standard output:
For scf.DFTU.Type=1,
*******************************************************
DFT+U Type and DC
*******************************************************
scf.DFTU.Type: 1(Simplified)
For scf.DFTU.Type=2 and scf.dc.Type=cFLL,
*******************************************************
DFT+U Type and DC
*******************************************************
scf.DFTU.Type: 2(General) scf.dc.Type: cFLL
As an example of the DFT+
calculation, the density of states for NiO bulk is shown in Fig. 34
for cases with
eV and two different
values (0.5 and 1.0 eV) for
-orbitals of Ni.
![]() |
scf.dc.Type.
The occupation number for each orbital is output to the file 'System.Name.out'
in the same form as that of decomposed Mulliken populations which
starts from the title 'Occupation Number in LDA+U', e.g.,
NiO with 'scf.dc.Type=cFLL' of
eV and
eV, as follows:
***********************************************************
***********************************************************
Occupation Number in LDA+U and Constraint DFT
Eigenvalues and eigenvectors for a matrix consisting
of occupation numbers on each site
***********************************************************
***********************************************************
1 Ni
spin= 0
Sum = 8.708572022602
1 2 3 4 5 6 7 8
Individual -0.0041 0.0012 0.0012 0.0022 0.0040 0.0040 0.0044 0.0064
s 0 0.1792 -0.0008 -0.0000 0.0015 -0.0000 0.0003 0.0124 -0.0000
s 1 -0.9756 0.0052 0.0000 0.0026 0.0000 -0.0041 -0.1251 0.0000
px 0 0.0006 0.0007 -0.0012 -0.0123 0.0003 0.0006 -0.0033 -0.0000
py 0 0.0006 -0.0013 -0.0000 -0.0122 0.0000 0.0000 -0.0033 0.0000
pz 0 0.0006 0.0007 0.0012 -0.0123 -0.0003 0.0006 -0.0033 0.0000
px 1 0.0091 0.0053 -0.0095 -0.0867 0.0205 0.0152 -0.0206 0.0026
py 1 0.0093 -0.0116 -0.0000 -0.0870 -0.0000 -0.0207 -0.0236 -0.0000
pz 1 0.0091 0.0052 0.0095 -0.0867 -0.0205 0.0152 -0.0206 -0.0026
d3z^2-r^2 0 0.0002 0.0348 0.0604 -0.0000 -0.0020 0.0012 0.0001 -0.0005
dx^2-y^2 0 0.0004 0.0604 -0.0348 -0.0000 0.0011 0.0020 0.0001 0.0003
dxy 0 -0.0001 0.0007 0.0012 0.0151 0.0367 -0.0218 0.0097 -0.0003
dxz 0 -0.0006 -0.0015 -0.0000 0.0167 0.0000 0.0417 0.0112 0.0000
dyz 0 -0.0001 0.0007 -0.0012 0.0151 -0.0367 -0.0218 0.0097 0.0003
d3z^2-r^2 1 -0.0025 -0.4966 -0.8626 -0.0006 0.0295 -0.0174 -0.0006 0.0056
dx^2-y^2 1 -0.0042 -0.8625 0.4967 -0.0010 -0.0170 -0.0301 -0.0010 -0.0033
dxy 1 0.0136 -0.0160 -0.0276 -0.5343 -0.7016 0.4220 -0.1326 0.0055
dxz 1 0.0225 0.0332 0.0000 -0.5657 -0.0000 -0.7918 -0.1607 -0.0000
dyz 1 0.0136 -0.0161 0.0275 -0.5343 0.7016 0.4219 -0.1325 -0.0055
f5z^2-3r^2 0 -0.0029 0.0032 0.0065 -0.0804 -0.0514 0.0334 -0.0282 -0.0069
f5xz^2-xr^2 0 0.0017 -0.0304 -0.0148 0.0467 -0.0113 -0.0653 0.0174 -0.4673
f5yz^2-yr^2 0 0.0013 0.0057 -0.0294 0.0479 0.0517 0.0341 0.0272 0.4428
fzx^2-zy^2 0 -0.0001 -0.0360 0.0237 -0.0031 -0.0256 -0.0567 0.0001 0.5857
fxyz 0 0.1218 -0.0003 -0.0000 0.2573 0.0000 0.0172 -0.9581 0.0000
fx^3-3*xy^2 0 -0.0023 -0.0195 -0.0197 -0.0655 0.0563 -0.0083 -0.0223 -0.3532
f3yx^2-y^3 0 0.0017 0.0072 0.0228 0.0618 -0.0401 0.0441 0.0352 -0.3430
9 10 11 12 13 14 15 16
Individual 0.0116 0.0117 0.0207 0.0207 0.0238 0.0972 0.1112 0.1114
s 0 -0.0003 -0.0000 0.0000 -0.0005 -0.0075 -0.0206 -0.0000 -0.0000
s 1 0.0001 0.0000 0.0000 -0.0013 0.0076 0.0102 0.0000 -0.0000
px 0 -0.0005 0.0006 -0.0024 0.0014 0.0043 -0.0270 0.0291 0.0170
py 0 0.0006 0.0000 0.0000 -0.0027 0.0044 -0.0279 -0.0000 -0.0338
pz 0 -0.0005 -0.0006 0.0024 0.0014 0.0043 -0.0270 -0.0291 0.0171
px 1 0.0229 -0.0402 0.1442 -0.0832 -0.1073 0.5479 -0.6901 -0.4038
py 1 -0.0437 0.0000 -0.0005 0.1632 -0.1127 0.5594 0.0003 0.7916
pz 1 0.0229 0.0402 -0.1437 -0.0841 -0.1073 0.5478 0.6898 -0.4043
d3z^2-r^2 0 0.0053 0.0093 0.0012 0.0006 -0.0001 0.0003 -0.0202 0.0115
dx^2-y^2 0 0.0092 -0.0053 -0.0007 0.0011 -0.0002 0.0006 0.0117 0.0199
dxy 0 -0.0033 -0.0056 -0.0049 -0.0032 -0.0237 0.0916 0.0095 -0.0067
dxz 0 0.0069 -0.0000 -0.0000 0.0054 -0.0236 0.0915 0.0000 0.0102
dyz 0 -0.0033 0.0056 0.0049 -0.0031 -0.0237 0.0916 -0.0095 -0.0067
d3z^2-r^2 1 -0.0241 -0.0404 -0.0230 -0.0138 0.0011 -0.0001 0.0089 -0.0052
dx^2-y^2 1 -0.0418 0.0233 0.0134 -0.0238 0.0018 -0.0002 -0.0051 -0.0090
dxy 1 0.0224 0.0367 0.0645 0.0399 0.1012 -0.0657 -0.0086 0.0058
dxz 1 -0.0489 0.0000 0.0002 -0.0737 0.1010 -0.0652 -0.0000 -0.0096
dyz 1 0.0224 -0.0367 -0.0648 0.0395 0.1011 -0.0657 0.0086 0.0058
f5z^2-3r^2 0 0.0928 0.1648 -0.6676 -0.3997 -0.5498 -0.1226 -0.1505 0.0868
f5xz^2-xr^2 0 0.4854 0.4030 -0.3328 0.3674 0.3359 0.0744 -0.0944 -0.0506
f5yz^2-yr^2 0 0.1112 0.6352 0.1497 -0.4674 0.3502 0.0772 -0.0023 0.1046
fzx^2-zy^2 0 0.6859 -0.3821 -0.0991 0.1577 -0.0010 -0.0008 0.0028 0.0032
fxyz 0 0.0052 0.0000 0.0000 -0.0109 0.0195 0.0064 0.0000 0.0007
fx^3-3*xy^2 0 0.4934 0.1037 0.5899 -0.2158 -0.4352 -0.0974 0.1173 0.0705
f3yx^2-y^3 0 0.1435 -0.4920 -0.1130 -0.6043 0.4520 0.0997 0.0019 0.1351
17 18 19 20 21 22 23 24
Individual 0.2342 0.9866 0.9949 0.9950 1.0070 1.0070 1.0101 1.0101
s 0 0.9835 -0.0030 -0.0001 0.0000 -0.0000 0.0001 0.0003 0.0000
s 1 0.1796 -0.0015 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000
px 0 -0.0023 -0.5138 -0.3934 -0.6753 -0.0494 -0.0317 0.1133 -0.2016
py 0 -0.0021 -0.5218 0.7787 -0.0000 -0.0000 0.0587 -0.2264 -0.0000
pz 0 -0.0023 -0.5138 -0.3933 0.6753 0.0494 -0.0317 0.1132 0.2017
px 1 0.0092 -0.0625 -0.0195 -0.0329 0.0012 0.0006 -0.0049 0.0083
py 1 0.0095 -0.0631 0.0376 -0.0000 0.0000 -0.0016 0.0097 0.0000
pz 1 0.0092 -0.0625 -0.0195 0.0329 -0.0012 0.0006 -0.0049 -0.0083
.....
...
The eigenvalues of the occupation number matrix of each atomic site correspond
to the occupation number to each local state given by the eigenvector.