In the step 3, transmission eigenchannels are calculated optionally. The relevant keywords for this calculation are as follows:
NEGF.tran.Channel on # default on NEGF.Channel.Nkpoint 1 # default=1 <NEGF.Channel.kpoint 0.0 0.0 NEGF.Channel.kpoint> # default 0.0 0.0 NEGF.Channel.Nenergy 1 # default=1 <NEGF.Channel.energy 0.0 NEGF.Channel.energy> # default 0.0 NEGF.Channel.Num 5 # defualt=5(for collinear), 10(for Non-collinear)
NEGF.tran.Channel
If NEGF.tran.Channel
is set to on
,
the eigenchannel is calculated.
NEGF.Channel.Nkpoint
, <NEGF.Channel.kpoint
,
NEGF.Channel.kpoint>
These keywords specify the k point, at which eigenchannels are calculated.
Please write a points per one line
between <NEGF.Channel.kpoint
and NEGF.Channel.kpoint>
;
the total number of is NEGF.Channel.Nkpoint
.
The coordinate of the is two dimensional fractional coordinate;
should be specified as coefficients of two reciprocal lattice vector
perpendicular to the transmittion direction.
NEGF.Channel.Nenergy
, <NEGF.Channel.energy
,
NEGF.Channel.energy>
These keywords specify the energy, at which eigenchannels are calculated.
Please write a energy per one line between
<NEGF.Channel.energy
and NEGF.Channel.energy>
;
the total number of energies is NEGF.Channel.Nenergy
.
The unit should be [eV] and the energy should be measured from the
electrochemical potential of the left lead.
NEGF.Channel.Num
It specifies the number of eigenchannels that are printed
in the real space representation.
In each , energy, spin,
NEGF.Channel.Num
eigenchannels in descending order about
transmission eigenvalues are printed in the Gaussian cube format;
the real and imaginary part is printed separately.
In the calculation of eigenchannels, openmx
makes the following standard output:
************************************************** Calculation of transmission eigenchannels starts ************************************************** File index : negf-8zgnr-0.3.traneval#k_#E_#spin negf-8zgnr-0.3.tranevec#k_#E_#spin myid0 = 0, #k : 0, N_{ort} / N_{nonort} : 380 / 380 PE 0 generates ./negf-8zgnr-0.3.traneval0_0_0 . Sum(eigenval) : 0.031643 PE 0 generates ./negf-8zgnr-0.3.traneval0_0_1 . Sum(eigenval) : 0.000508 Eigenchannel calculation finished They are written in plottable files. File index : negf-8zgnr-0.3.tranec#k_#E_#spin_#branch_r.cube(.bin) negf-8zgnr-0.3.tranec#k_#E_#spin_#branch_i.cube(.bin) ./negf-8zgnr-0.3.tranec0_0_0_0_r.cube ./negf-8zgnr-0.3.tranec0_0_0_0_i.cube ./negf-8zgnr-0.3.tranec0_0_0_1_r.cube ./negf-8zgnr-0.3.tranec0_0_0_1_i.cube ./negf-8zgnr-0.3.tranec0_0_0_2_r.cube ./negf-8zgnr-0.3.tranec0_0_0_2_i.cube ./negf-8zgnr-0.3.tranec0_0_0_3_r.cube ./negf-8zgnr-0.3.tranec0_0_0_3_i.cube ./negf-8zgnr-0.3.tranec0_0_0_4_r.cube ./negf-8zgnr-0.3.tranec0_0_0_4_i.cube ./negf-8zgnr-0.3.tranec0_0_1_0_r.cube ./negf-8zgnr-0.3.tranec0_0_1_0_i.cube ./negf-8zgnr-0.3.tranec0_0_1_1_r.cube ./negf-8zgnr-0.3.tranec0_0_1_1_i.cube ./negf-8zgnr-0.3.tranec0_0_1_2_r.cube ./negf-8zgnr-0.3.tranec0_0_1_2_i.cube ./negf-8zgnr-0.3.tranec0_0_1_3_r.cube ./negf-8zgnr-0.3.tranec0_0_1_3_i.cube ./negf-8zgnr-0.3.tranec0_0_1_4_r.cube ./negf-8zgnr-0.3.tranec0_0_1_4_i.cube
In this case, 22 files,
negf-8zgnr-0.3.treval0_0_0
, negf-8zgnr-0.3.tranevec0_0_0
,
negf-8zgnr-0.3.tranec0_0_0_0_r.cube
- negf-8zgnr-0.3.tranec0_0_1_4_r.cube
,
negf-8zgnr-0.3.tranec0_0_0_0_i.cube
- negf-8zgnr-0.3.tranec0_0_1_4_i.cube
,
are generated.
.traneval{#k}_{#E}_{#s}
This file contains transmission eigenvalues of all eigenchannels in
the {#k}
th k, {#E}
th energy, and {#s}
th spin.
.tranevec{#k}_{#E}_{#s}
This file contains LCAO components of all eigenchannels in
the {#k}
th k, {#E}
th energy, and {#s}
th spin.
e. g. / negf-chain.tranevec0_0_0
*********************************************************** *********************************************************** Eigenvalues and LCAO coefficients at the k-points specified in the input file. *********************************************************** *********************************************************** # of k-point = 0 k2= 0.00000 k3= 0.00000 # of Energy = 0 e= 0.00000 Spin = Up Real (Re) and imaginary (Im) parts of LCAO coefficients 1 2 3 4 0.9778 0.0000 0.0000 0.0000 Re Im Re Im Re Im Re Im 1 C 0 s -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 1 s -0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0 px -0.63002 -1.49377 -0.14466 0.00019 0.01644 -0.00032 -0.07885 0.00095 0 py 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0 pz 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 2 C 0 s -0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 1 s 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0 px 0.18040 -0.03816 -0.00452 0.00009 -0.00545 -0.00010 -0.01970 -0.00004 0 py -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 pz 0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 3 C 0 s 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 1 s -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 0 px 2.06634 0.40490 0.11067 0.00023 -0.06068 0.00009 -0.06690 -0.00042 0 py 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0 pz 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 4 C 0 s 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 1 s -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000
.tranec{#k}_{#E}_{#s}_{#c}_r.cube
,
.tranec{#k}_{#E}_{#s}_{#c}_i.cube
This file contains the real or the imaginary part of the eigenchannel in the Gaussian cube format. We can display isosurfaces from this files by using VESTA, XCrysDen, and so on. As an example, we show in Fig. 43 eigenchannels in the 8-zigzag graphene nanoribbon with an antiferromagnetic junction under a finite bias voltage of 0.3 V.
|