If the installation is completed normally, please move to the directory 'work' and perform the program 'openmx' using an input file 'Methane.dat' which can be found in the directory 'work' as follows:
% mpirun -np 1 openmx Methane.dat > met.std &Or if you use the MPI/OpenMP version:
% mpirun -np 1 openmx Methane.dat -nt 1 > met.std &
The test input file 'Methane.dat' is for performing the SCF calculation of a methane molecule with a fixed structure (No MD). The calculation is performed in only about 5 seconds by using a single core on a 2.6 GHz Xeon machine, although it is dependent on a computer. When the calculation is completed normally, 11 files and one directory
met.std standard output of the SCF calculation met.out input file and standard output met.xyz final geometrical structure met.ene values computed at every MD step met.md geometrical structures at every MD step met.md2 geometrical structure of the final MD step met.cif cif file of the initial structure for Material Studio met.tden.cube total electron density in the Gaussian cube format met.v0.cube Kohn-Sham potential in the Gaussian cube format met.vhart.cube Hartree potential in the Gaussian cube format met.dden.cube difference electron density measured from atomic density met_rst/ directory storing restart filesare output to the directory 'work'. The output data to a standard output is stored to the file 'met.std' which is helpful to know the computational flow of the SCF procedure. The file 'met.out' includes computed results such as the total energy, forces, the Kohn-Sham eigenvalues, Mulliken charges, the convergence history for the SCF calculation, and analyzed computational time. A part of the file 'met.out' is shown below. It is found that the eigenvalues energy converges by 14 iterations within 1.0e-10 Hartree.
*********************************************************** *********************************************************** SCF history at MD= 1 *********************************************************** *********************************************************** SCF= 1 NormRD= 1.000000000000 Uele= -3.523169099731 SCF= 2 NormRD= 0.181517404404 Uele= -3.686855123738 SCF= 3 NormRD= 0.449067381009 Uele= -4.193062144919 SCF= 4 NormRD= 0.541215648203 Uele= -4.381387140154 SCF= 5 NormRD= 0.509921689399 Uele= -4.352426233337 SCF= 6 NormRD= 0.004026023243 Uele= -3.886371199720 SCF= 7 NormRD= 0.000838640096 Uele= -3.889312346884 SCF= 8 NormRD= 0.000420666755 Uele= -3.889396659132 SCF= 9 NormRD= 0.000241013350 Uele= -3.889362708861 SCF= 10 NormRD= 0.000573725679 Uele= -3.889427222948 SCF= 11 NormRD= 0.000000150516 Uele= -3.889316043314 SCF= 12 NormRD= 0.000000001917 Uele= -3.889316014533 SCF= 13 NormRD= 0.000000000005 Uele= -3.889316014156 SCF= 14 NormRD= 0.000000000001 Uele= -3.889316014146Also, the total energy, chemical potential, Kohn-Sham eigenvalues, the Mulliken charges, dipole moment, forces, fractional coordinate, and analysis of computational time are output in 'met.out' as follows:
******************************************************* Total energy (Hartree) at MD = 1 ******************************************************* Uele. -3.889316014146 Ukin. 5.533759381370 UH0. -14.855519969177 UH1. 0.041396138425 Una. -5.040606545149 Unl. -0.134650846490 Uxc0. -1.564720263874 Uxc1. -1.564720263874 Ucore. 9.551521413583 Uhub. 0.000000000000 Ucs. 0.000000000000 Uzs. 0.000000000000 Uzo. 0.000000000000 Uef. 0.000000000000 UvdW 0.000000000000 Uch 0.000000000000 Utot. -8.033540955187 Note: Utot = Ukin+UH0+UH1+Una+Unl+Uxc0+Uxc1+Ucore+Uhub+Ucs+Uzs+Uzo+Uef+UvdW Uene: band energy Ukin: kinetic energy UH0: electric part of screened Coulomb energy UH1: difference electron-electron Coulomb energy Una: neutral atom potential energy Unl: non-local potential energy Uxc0: exchange-correlation energy for alpha spin Uxc1: exchange-correlation energy for beta spin Ucore: core-core Coulomb energy Uhub: DFT+U energy Ucs: constraint energy for spin orientation Uzs: Zeeman term for spin magnetic moment Uzo: Zeeman term for orbital magnetic moment Uef: electric energy by electric field UvdW: semi-empirical vdW energy (see also PRB 72, 045121(2005) for the energy contributions) Chemical potential (Hartree) 0.000000000000 *********************************************************** *********************************************************** Eigenvalues (Hartree) for SCF KS-eq. *********************************************************** *********************************************************** Chemical Potential (Hartree) = 0.00000000000000 Number of States = 8.00000000000000 HOMO = 4 Eigenvalues Up-spin Down-spin 1 -0.69897506408475 -0.69897506408475 2 -0.41523055776668 -0.41523055776668 3 -0.41523055768741 -0.41523055768741 4 -0.41522182758055 -0.41522182758055 5 0.21221759603691 0.21221759603691 6 0.21221759685634 0.21221759685634 7 0.21230533059490 0.21230533059490 8 0.24741918440773 0.24741918440773 *********************************************************** *********************************************************** Mulliken populations *********************************************************** *********************************************************** Total spin moment (muB) 0.000000000 Up spin Down spin Sum Diff 1 C 2.509748760 2.509748760 5.019497520 0.000000000 2 H 0.372562810 0.372562810 0.745125620 0.000000000 3 H 0.372562810 0.372562810 0.745125620 0.000000000 4 H 0.372562810 0.372562810 0.745125620 0.000000000 5 H 0.372562810 0.372562810 0.745125620 0.000000000 Sum of MulP: up = 4.00000 down = 4.00000 total= 8.00000 ideal(neutral)= 8.00000 Decomposed Mulliken populations 1 C Up spin Down spin Sum Diff multiple s 0 0.681737894 0.681737894 1.363475787 0.000000000 sum over m 0.681737894 0.681737894 1.363475787 0.000000000 sum over m+mul 0.681737894 0.681737894 1.363475787 0.000000000 px 0 0.609352701 0.609352701 1.218705403 0.000000000 py 0 0.609305463 0.609305463 1.218610926 0.000000000 pz 0 0.609352702 0.609352702 1.218705404 0.000000000 sum over m 1.828010866 1.828010866 3.656021733 0.000000000 sum over m+mul 1.828010866 1.828010866 3.656021733 0.000000000 2 H Up spin Down spin Sum Diff multiple s 0 0.372562810 0.372562810 0.745125620 0.000000000 sum over m 0.372562810 0.372562810 0.745125620 0.000000000 sum over m+mul 0.372562810 0.372562810 0.745125620 0.000000000 3 H Up spin Down spin Sum Diff multiple s 0 0.372562810 0.372562810 0.745125620 0.000000000 sum over m 0.372562810 0.372562810 0.745125620 0.000000000 sum over m+mul 0.372562810 0.372562810 0.745125620 0.000000000 4 H Up spin Down spin Sum Diff multiple s 0 0.372562810 0.372562810 0.745125620 0.000000000 sum over m 0.372562810 0.372562810 0.745125620 0.000000000 sum over m+mul 0.372562810 0.372562810 0.745125620 0.000000000 5 H Up spin Down spin Sum Diff multiple s 0 0.372562810 0.372562810 0.745125620 0.000000000 sum over m 0.372562810 0.372562810 0.745125620 0.000000000 sum over m+mul 0.372562810 0.372562810 0.745125620 0.000000000 *********************************************************** *********************************************************** Dipole moment (Debye) *********************************************************** *********************************************************** Absolute D 0.00000000 Dx Dy Dz Total 0.00000000 0.00000000 0.00000000 Core 0.00000000 0.00000000 0.00000000 Electron 0.00000000 0.00000000 0.00000000 Back ground -0.00000000 -0.00000000 -0.00000000 *********************************************************** *********************************************************** xyz-coordinates (Ang) and forces (Hartree/Bohr) *********************************************************** *********************************************************** <coordinates.forces 5 1 C 0.00000 0.00000 0.00000 0.000000000000 0.00... 2 H -0.88998 -0.62931 0.00000 -0.064890985127 -0.04... 3 H 0.00000 0.62931 -0.88998 0.000000000002 0.04... 4 H 0.00000 0.62931 0.88998 0.000000000002 0.04... 5 H 0.88998 -0.62931 0.00000 0.064890985122 -0.04... coordinates.forces> *********************************************************** *********************************************************** Fractional coordinates of the final structure *********************************************************** *********************************************************** 1 C 0.00000000000000 0.00000000000000 0.00000000000000 2 H 0.91100190000000 0.93706880000000 0.00000000000000 3 H 0.00000000000000 0.06293120000000 0.91100190000000 4 H 0.00000000000000 0.06293120000000 0.08899810000000 5 H 0.08899810000000 0.93706880000000 0.00000000000000 *********************************************************** *********************************************************** Computational Time (second) *********************************************************** *********************************************************** Elapsed.Time. 4.600 Min_ID Min_Time Max_ID Max_Time Total Computational Time = 0 4.600 0 4.600 readfile = 0 2.578 0 2.578 truncation = 0 0.146 0 0.146 MD_pac = 0 0.000 0 0.000 OutData = 0 0.283 0 0.283 DFT = 0 1.591 0 1.591 *** In DFT *** Set_OLP_Kin = 0 0.052 0 0.052 Set_Nonlocal = 0 0.039 0 0.039 Set_ProExpn_VNA = 0 0.156 0 0.156 Set_Hamiltonian = 0 0.663 0 0.663 Poisson = 0 0.214 0 0.214 Diagonalization = 0 0.005 0 0.005 Mixing_DM = 0 0.000 0 0.000 Force = 0 0.039 0 0.039 Total_Energy = 0 0.256 0 0.256 Set_Aden_Grid = 0 0.019 0 0.019 Set_Orbitals_Grid = 0 0.015 0 0.015 Set_Density_Grid = 0 0.124 0 0.124 RestartFileDFT = 0 0.004 0 0.004 Mulliken_Charge = 0 0.000 0 0.000 FFT(2D)_Density = 0 0.000 0 0.000 Others = 0 0.005 0 0.005
The files 'met.tden.cube', 'met.v0.cube', 'met.vhart.cube', and 'met.dden.cube', are the total electron density, the Kohn-Sham potential, the Hartree potential, and the difference electron density taken from the superposition of atomic densities of constituent atoms, respectively, which are output in the Gaussian cube format. Since the Gaussian cube format is one of well used grid formats, you can visualize the files using free molecular modeling software such as VESTA [103], Molekel [104], and XCrySDen [105]. The visualization will be illustrated in the later section.