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An efficient and accurate contour integration method is presented for large-scale electronic structure calcu-
lations based on the Green function. By introducing a continued fraction representation of the Fermi-Dirac
function derived from a hypergeometric function, the Matsubara summation is generalized with respect to
distribution of poles so that the integration of the Green function can converge rapidly. Numerical illustrations,
evaluation of the density matrix for a simple model Green function and a total energy calculation for aluminum
bulk within density functional theory, clearly show that the method provides remarkable convergence with a
small number of poles, indicating that the method can be applied to not only the electronic structure calcula-
tions, but also a wide variety of problems.
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I. INTRODUCTION

The integration of the Green function associated with the
Fermi-Dirac function is one of the most important ingredi-
ents for accurate and efficient implementation of electronic
structure calculation methods regardless of ab initio or semi-
empirical schemes. One can realize that the integration arises
in lots of electronic structure calculation methods such as the
Korringa-Kohn-Rostoker �KKR� Green function method,1–3

Green function based O�N� methods such as a recursion
method,4,5 a surface Green function method6 such as an em-
bedded method,7 and Green function methods based on a
many body perturbation theory such as the GW method.8,9

Therefore, it is obvious that a highly accurate and efficient
method must be developed for the integration to extend ap-
plicability of these electronic structure calculation methods.
Since the well-known Matsubara summation15,16 is insuffi-
cient for this purpose due to the slow convergence, consid-
erable efforts have been devoted for development of efficient
integration methods.10–14 A way of developing an efficient
method beyond the Matsubara summation is to seek another
expression for the Fermi-Dirac function. Along this line, an
expression �1+ �1+x /n�n�−1 is used by Nicholson et al.,10

and an integral representation is proposed by Goedecker.11 In
this paper I seek a different expression for the Fermi-Dirac
function, and present an accurate and efficient method for the
integration, based on a continued fraction representation of
the Fermi-Dirac function which is derived from a hypergeo-
metric function. Because of a simple distribution of poles in
the continued fraction similar to the Matsubara poles, it is
anticipated that the proposed method can be easily incorpo-
rated into many applications with the same procedure as for
the Matsubara summation but with remarkable efficiency. It
will be shown that the rapid convergence in the integration
can be attributed to an interesting nonuniform distribution of
the poles on the imaginary axis, and that even a small num-
ber of poles in the contour integration enables us to achieve
convergent results with precision of more than ten digits.
This paper is organized as follows. In Sec. II the theory of
the proposed method is presented with comparison to other

methods. In Sec. III in order to illustrate the rapid conver-
gence properties of the proposed method I give two numeri-
cal examples: a calculation of the density matrix for a simple
model Green function and a total energy calculation of alu-
minum bulk within a density functional theory. In Sec. IV the
theory and applicability of the proposed method are summa-
rized.

II. THEORY

A. Continued fraction representation of the Fermi-Dirac
function

Let us introduce a continued fraction representation of the
Fermi-Dirac function f�x� which is derived from a hypergeo-
metric function
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where x=��z−�� with �= 1
kBT , � is chemical potential, T

electronic temperature, z and x are complex variables. The
derivation of Eq. �1� is given in Appendix A. Figure 1 shows
the approximate Fermi-Dirac function terminated at 60 levels
of the continued fraction given by Eq. �1� as a function of x
together with the exact Fermi-Dirac function �1+ �1
+x /n�n�−1 with n=120, and the Matsubara expansion. Note
that all the approximants possess the same number of poles,
120, on the whole complex plane for substantial comparison.
It is found that the approximate function by Eq. �1� can re-
produce accurately the Fermi-Dirac function for a wide range
of energy compared to the function �1+ �1+x /n�n�−1 which
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has been previously used to approximate the Fermi-Dirac
function in a contour integration method,10 while the Mat-
subara expansion poorly approximates the Fermi-Dirac func-
tion when curtailed at a finite number of poles.17,18

Now I consider the termination of the continued fraction
Eq. �1� to a finite level M, and assume M is an even number,
i.e., M =2N�N=1,2 ,3 , . . . �. It can be pointed out that Eq. �1�
with the finite continued fraction may correspond to the Padé
approximant PM�x� /QM�x� of the Fermi-Dirac function itself
rather than the exponential function, where PM�x� and QM�x�
are relevant polynomials of Mth order. Thus, PM�x�
−QM�x�f�x� is zero up to 2M-th order of x, where f�x� is the
Taylor series of the Fermi-Dirac function.19 In this sense the
proposed method is similar to the integral representation of
the Fermi-Dirac function proposed by Goedecker,11 while the
overall feature of the derivation looks very different. In the
case of N=1, for instance, Eq. �1� with the finite continued
fraction is decomposed into partial fractions via the Padé
approximant as follows:
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In general, for the finite continued fraction terminated at M
=2N, the Fermi-Dirac function can be approximated by the
sum of partial fractions with the poles ±zp and residues Rp as
follows:
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The expression becomes exact in case of the limit: N→�.
Noting that 1 / �1+exp�x��=1/2−1/2 tanh�x /2� and tanh�x�
is an odd function, it is found that the poles are symmetri-

cally located on the complex plane with respect to the real
axis. Furthermore, it will be shown in later discussion that
the poles are located on only the imaginary axis and that the
residues are real numbers. Thus, note that zp is a real number
in Eq. �3�. In case of an odd number of M =2N−1, an addi-
tional term which is proportional to x is added to Eq. �3�, and
I will not discuss the odd case in this paper.

Although zp and Rp may be analytically expressed for any
termination to arbitrary order of N, however, the formulas
tend to be overly complicated to handle as N increases. Thus,
I present an alternative method of finding these values by
introducing an eigenvalue problem. Taking account of a fact
that the �1,1� element �C−1�11 of the inverse of a tridiagonal
matrix C defined by

C =�
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c21 c22 c23

c32 c33 c34

. . . . . . . . .
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¯
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and comparing the continued fraction in the parenthesis of
the right hand side of Eq. �1� with Eq. �5�, the matrix ele-
ments of C can be determined as follows:

cpp = 2p − 1, �6�

cp�p+1� = c�p+1�p = i
x

2
, �7�

where p runs from 1 to M for cpp, and from 1 to M −1 for
cp�p+1� and c�p+1�p. Thus, one obtain an interesting relation
that the Fermi-Dirac function can be expressed by the �1,1�
element of the resolvent of �ixB−A�:
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and

FIG. 1. �Color online� The Fermi-Dirac function and its approxi-
mants as a function of the real axis x. For substantial comparison all
the approximants possess the same number of poles, 120.
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where A and B are matrices of M �M in size, and Eq. �8�
becomes exact as M increases. The relation Eq. �8� tells us
that finding the singular points of Eq. �1� is equivalent to
solving the generalized eigenvalue problem Ab= ixBb, where
b is the eigenvector. Moreover, replacing ix with y yields
Ab=yBb. Then, it can be proven that the eigenvalue x is a
pure imaginary number, giving that zp is a real number in Eq.
�3�, since y is a real number due to the symmetric real ma-
trices A and B.20 The imaginary eigenvalues go away from
the real axis and the distribution becomes sparse as the dis-
tance between the pole and the real axis increases as shown
in the inset of Fig. 2, and this is a key feature for the fast
convergence in the integrations of the Green function as
shown later, since the Green function becomes structureless,
while going away from the real axis. In addition, noting that
the residue Rp� calculated from the eigenvectors b for Ab
=yBb is a real number, since the eigenvectors b consist of
real numbers, and that
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one can find that the residue Rp in Eq. �3� is a real number,
where Rp� and −Rp� appearing in the first line of Eq. �11� are
due to the symmetry of tanh�x�. Thus, the poles and residues
in Eq. �1� can be easily obtained by solving the eigenvalue
problem Ab=yBb with the real symmetric matrices A and B
without any numerical difficulty.21

The characteristic feature of Eq. �1� that the poles are
located on the imaginary axis and the residues are real is
similar to that of the Matsubara summation. It is noted that
the Fermi-Dirac function in the Matsubara summation is ex-
pressed by a development
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with the poles ±i��2n−1� and the residues −1. This relation
�12� can be derived by taking account of Eq. �A10� and the
Mittag-Leffler expansion22 for tanh�x�. Therefore, one may
think that their convergence properties should be comparable
to each other. However, it will be shown later that the con-
tinued fraction representation by Eq. �1� provides a remark-
able convergence speed compared to the Matsubara summa-
tion. The roots of the rapid convergence lies on an interesting
non-uniform distribution of the poles on the imaginary axis.
It is observed from Fig. 3 that in case of N=100 the interval
between neighboring poles of Eq. �1� are uniformly located

FIG. 2. �Color online� The path of the contour integration associated with Eq. �1�. The inset shows the distribution of zero points of Eq.
�1�.
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up to around 61th poles with the same interval 2� as that of
the Matsubara poles, and from then onward it increases very
rapidly as the distance between the pole and the real axis
increases, while the Matsubara poles distribute uniformly on
the imaginary axis everywhere. The distribution of the poles
seems to be almost independent of the number of poles N,
provided that the pole index is normalized by the number of
poles N on the upper half complex plane, i.e., the interval
starts to increase rapidly at about 61% of the total number of
poles N. The sparse distribution of poles of Eq. �1� in the
faraway region from the real axis well matches the fact that
the Green function becomes a smooth function, while going
away from the real axis, and by covering a wide range of the
imaginary axis with a small number of poles, the continued
fraction representation Eq. �1� can reproduce very well the
Fermi-Dirac function on the real axis as shown in Fig. 1. The
property is the reason why Eq. �1� is much superior to the
Matsubara summation for the integration of the Green func-
tion.

B. Calculation of the density matrix

We are now ready to make full use of Eq. �3� to evaluate
integrated quantities associated with a Green function with
the Fermi-Dirac function. Here, as an example, I consider
evaluation of the one-particle density matrix �, which is one
of the most important quantities in electronic structure cal-
culations, calculated by the Green function G�z� being an
analytic function apart from the real axis E with the Fermi-
Dirac function. Considering the expression of Eq. �3� and the
contour integral with an integration path on the upper half
complex plane as shown in Fig. 2, the density matrix � can
be evaluated by
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where the factor 2 in the first line is for spin multiplicity
�p=�+ i

zp

� , ��0� the zeroth order moment of the Green func-
tion, and 0+ a positive infinitesimal. This expression �13� is
valid for Green functions such as G�z�= �zS−H�−1 and G�z�
= �zS−H−��z��−1, where H and S are real symmetric Hamil-
tonian and overlap matrices, and ��z� is an energy-dependent
matrix such as a self-energy matrix which is real symmetric
on the real axis. A more general case with energy dependent
complex matrices is discussed in the Appendix B. The first
term in the second line of Eq. �13� is transformed into the
zeroth order moment ��0� of the Green function by the con-
tour integration as follows:
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=��0�. �14�

Although the evaluation of the second term in the final line
of Eq. �13� is straightforward, the calculation of the first term
��0� is nontrivial. However, it is shown that the zeroth order
moment can be easily evaluated by utilizing the moment
representation of the Green function as shown below. Start-
ing from the Lehmann representation of the Green function

G�z�=�−�
� dE

g�E�

z−E and taking account of �z−E�−1=z−1�1
−E /z�−1=�p=0

� Ep

zp+1 for �E /z�	1, one can obtain the moment
representation of the Green function
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�
��p�
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where ��p� is the pth moment of the Green function defined
by

��p� =� dEEpg�E� . �16�

On the other hand, multiplying the both side of Eq. �15� by zq

and integrating from −� to � along the real axis with an
infinitesimal imaginary part 0+, one has an alternative ex-
pression for the moment

��q� = Im�−
1

�
�

−�

�

dEEqG�E + i0+�� . �17�

It is found that the case of q=0 in Eq. �17� corresponds to
Eq. �14�. Writing z=R exp�i
� in Eq. �15�, assuming that R is
large enough so that the terms associated with higher orders
of R can be negligible, and taking 
= �

2 , one can obtain an
approximate expression for ��0�:

FIG. 3. �Color online� The interval between neighboring poles
of Eq. �1� terminated at N=100 as a function of an index of poles,
where the index of poles is determined in ascending order with
respect to the absolute value of poles. The interval for the Matsub-
ara poles is 2�.
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��0� 
 iRG�iR� , �18�

where R is a large real number and 1.0e+10 is used in this
study. Therefore, one can see that just one evaluation of the
Green function yields the zeroth order moment ��0�. In Eq.
�13� the integration on the real axis is transformed into a
quadrature on an axis perpendicular to the real axis with the
characteristic distribution of the poles except for the evalua-
tion of the zeroth moment ��0�. Thus, it is reasonable to
anticipate that the density matrix evaluated by Eq. �13�
quickly converges as a function of the number of poles, since
the Green function becomes structureless by going away
from own poles located on the real axis.

C. In case of a general density matrix

In this subsection an expression is given for the evalua-
tion of a general density matrix ��n� defined by

��n� = Im�−
2

�
lim
R→�

�
−R+�

R+�

dEEnG�E + i0+�f�E�� , �19�

where it is assumed that the Green function G possesses the
same property as discussed for Eq. �13�. It is worth mention-
ing that ��0� is a conventional density matrix given by Eq.
�13�, and ��1� is the so called energy density matrix. Noting
that zn= �z−�p���m=0

n−1 zn−1−m�p
m�+�p

n, and taking account of
Eq. �3�, one has the following expression:
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This expression becomes exact in case of N→�. Therefore,
putting Eq. �20� into Eq. �19� and considering a contour in-
tegration with the same path given by Fig. 2 as discussed for
Eq. �13�, we see that ��n� can be evaluated by

��n� = ��n� + 2�
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The moments ��m� up to nth orders in Eq. �21� can be evalu-
ated by generalizing the way of calculating ��0� discussed in
the previous subsection. If the summation in the moment
representation Eq. �15� of the Green function is terminated at
the nth level, the moments ��m� up to nth orders can be
determined by solving a linear equation for each element
�i , j�:

�
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¯
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where zm�m=0,1 . . ,n� are large complex numbers, and can
be given by zm=R exp�i �

2
�1+ m

n
�� with a large R, while they

can be chosen arbitrarily only if �zm� is large enough so that
the higher order terms can be negligible. Thus, one can see
that the general density matrix ��n� is evaluated by the pro-
posed method as well as the conventional density matrix. In
the Appendix C the integrations of the Green function with
the derivative of the Fermi-Dirac function with respect to
energy are discussed.

III. NUMERICAL RESULTS

To demonstrate the rapid convergence of the proposed
method I give two numerical examples. �i� Calculation of the
density matrix for a simple model Green function and �ii� a
total energy calculation of aluminum bulk in the face cen-
tered cubic �fcc� structure within the Harris density
functional.23

As a simple model, let us consider a model Green func-
tion given by

G�z� =
1

z + 10
+

1

z + 5
+

1

z + 2
+

1

z − 5
, �24�

where the unit of energy is in eV. It is assumed that the
chemical potential is 0 eV and that the electronic tempera-
ture is 300 K. Table I show the density matrix � calculated
by three method: the proposed method through Eq. �13�, the
method discussed in Ref. 10, and the Matsubara
summation.15 We see that the density matrix calculated by
the proposed method rapidly converges at the analytic value
�3.0� using only 40 poles, while the convergence speed by

TABLE I. The density matrix of a model Green function given
by Eq. �24� as a function of the number of poles in the upper half
plane used in three contour integration methods. The analytic value
is 3.0.

Poles Proposed 1

1+�1+ x
n

�n
Matsubara

10 2.897457365704 0.000000000704 2.268430836092

20 2.999785910601 0.938582044963 2.424349652146

30 2.999999992975 1.000000000000 2.520372160464

40 3.000000000000 1.000000000001 2.588358024187

60 2.000000000000 2.681479492145

80 2.000000000000 2.742612466824

100 2.999998800183 2.785347036205

120 3.000000000000 2.816567540132

200 2.885375367071

500 2.953166094829

5000 2.995297020881
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the second method is about three times slower than that of
the proposed method. Also, the stepwise improvement of the
density matrix in the second method is attributed to the
plunge step of the approximate function �1+ �1+x /n�n�−1

used in the method in the lower energy region as shown in
Fig. 1. It is also confirmed that the convergence of the Mat-
subara summation is quite slow.

As well as the simple model, I show in Table II the con-
vergence of the total energy calculated by the recursion
method5 with the Harris functional23 for fcc aluminum as a
function of the number of poles. In this calculation I use
pseudoatomic double valence numerical functions as basis
set,24 a norm-conserving pseudopotential,25 and a general-
ized gradient approximation �GGA� to the exchange-
correlation potential.26 The Green function is evaluated by
the recursion method with ten recursion levels.5 Also, an
electronic temperature of 600 K is used. The DFT calcula-
tion was done using the OPENMX code.27 As shown in Table
II, it is obvious that the proposed method provides remark-
able rapid convergence. The use of only 80 poles yields the
convergent result of 14 digits which corresponds to the limit
of double precision. On the other hand, it turns out that the
second and third methods are much slower than the proposed
method, and that the full convergence is not achieved even in
the case of ten thousands poles. It is also worth mentioning
that the proposed method can be applicable to insulators and
semiconductors as well as metallic systems without depend-
ing the magnitude of band gap in a system if the Fermi
energy is determined so that the total number of electrons in
the whole system can be conserved.

IV. CONCLUSIONS

I have developed an efficient contour integration method
for electronic structure calculation methods based on the
Green function. By introducing a continued fraction repre-
sentation of the Fermi-Dirac function, the integration of
Green function with the Fermi-Dirac function on the real
axis is transformed into a quadrature on an axis perpendicu-
lar to the real axis except for the evaluation of the moments.
Although the feature is similar to that of the Matsubara sum-
mation, the most important distinction between those lies on
the distribution of poles. The poles of the continued fraction
distribute uniformly on an axis perpendicular to the real axis
with the same interval as the Matsubara poles up to about
61% of the total number of poles, and from then onward the
interval between neighboring poles increases rapidly as the
poles go away from the real axis, while the Matsubara poles
are uniformly located on an axis perpendicular to the real
axis. The characteristic distribution of poles in the continued
fraction well matches the smoothness of the Green function
in the distant region from the real axis, and therefore enables
us to achieve the remarkable convergence using a small
number of poles. The numerical examples clearly demon-
strate the computational efficiency and accuracy of the pro-
posed method. Since the contour integration by the continued
fraction representation can be regarded as a natural generali-
zation of the Matsubara summation with respect to the dis-
tribution of poles, it is anticipated that the proposed method
can be applied to not only the electronic structure calculation
methods, but also many other applications.

TABLE II. The total energy �Hartree� of fcc aluminum bulk calculated by the recursion method with the
Harris functional as a function of the number of poles in the upper half plane used in three contour integration
methods, where the electronic temperature is 600 K corresponding to a smearing of 0.052 eV. It is noted that
the width of the valence band consisting of 3s and 3p orbitals up to the Fermi level is about 10 eV.

Poles Proposed 1

1+�1+ x
n

�n
Matsubara

10 −42.933903047211 −33.734015919550 −39.612354360046

20 −47.224346653790 −33.623477214678 −39.849746603905

40 −48.323790725570 −33.346245616679 −40.216055898502

60 −48.324441992259 −33.143128624551 −39.676965494522

80 −48.324441994952 −32.870752577236 −43.523770052176

150 −48.324441994952 −33.837428496424 −41.836938942518

200 −33.418012271726 −42.543354202255

250 −34.003411636691 −43.024756221080

300 −34.003236479262 −43.466729654170

350 −48.324440028792 −43.834528739677

400 −48.324440274509 −44.185100655185

600 −48.324440847749 −45.233651519749

1000 −48.324441306517 −46.331692884149

2000 −48.324441650693 −47.202779497545

5000 −48.324441857239 −47.921384128418

10000 −48.324441926094 −48.122496320516
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APPENDIX A: DERIVATION OF THE CONTINUED
FRACTION REPRESENTATION OF THE FERMI-DIRAC

FUNCTION

In this Appendix the continued fraction representation Eq.
�1� of the Fermi-Dirac function is derived using a hypergeo-
metric function. The generalized hypergeometric function is
defined as a power series expansion by

pFq�a1, . . . ,ap;b1, . . . ,bq;x� = �
n=0

�
�nxn

n!
�A1�

with

�n =
�a1�n�a2�n ¯ �ap�n

�b1�n�b2�n ¯ �bq�n
, �A2�

where �a1�n is the Pochhammer symbol defined by

�a1�n = a1�a1 + 1��a1 + 2� � ¯ � �a1 + n − 1� �A3�

with an exceptional definition of �a1�0=1 in case of n=0.
The special cases of Eq. �A1� yield the following relations:

sinh�x� = x0F1�3

2
,
x2

4
� , �A4�

cosh�x� = 0F1�1

2
,
x2

4
� . �A5�

For later discussion, I will drop the suffixes of the hypergeo-
metric function for simplicity of notation, and define to be
F� 0F1. Furthermore, let us introduce a recurrence relation
for F:

F�a − 1,x� = F�a,x� +
x

�a − 1�a
F�a + 1,x� . �A6�

This relation can be proven by comparing the term in the
power series piece by piece. Dividing both the sides of Eq.
�A6� by F�a ,x� and considering the reciprocal, one has

F�a,x�
F�a − 1,x�

=
1

1 +
x

�a − 1�a
F�a + 1,x�

F�a,x�

. �A7�

Replacing the ratio of F in the right hand side of Eq. �A7� by
Eq. �A7� with increment of a by one recursively, one can
obtain the following continued fraction:

F�a,x�
F�a − 1,x�

=
1

1 +

x

�a − 1�a

1 +

x

a�a + 1�

1 +

x

�a + 1��a + 2�
�

.

�A8�

Now tanh�x� can be expressed by a continued fraction using
Eqs. �A4�, �A5�, and �A8�, as follows:

tanh�x� =
sinh�x�
cosh�x�

,

=x� F�3

2
,
x2

4
�

F�3

2
− 1,

x2

4
�� ,

=
x

1 +
x2

3 +
x2

5 +
x2

�

.

�A9�

Noting that exp�x�=
1+tanh� x

2
�

1−tanh� x
2

� , one has

1

1 + exp�x�
=

1

1 +

1 + tanh� x

2
�

1 − tanh� x

2
�

,

=
1

2
−

1

2
tanh� x

2
� . �A10�

Inserting Eq. �A9� into Eq. �A10� yields the continued frac-
tion representation Eq. �1� of the Fermi-Dirac function.

APPENDIX B: IN CASE OF THE GREEN FUNCTION
CONSISTING OF COMPLEX MATRICES

If the Green function consists of energy dependent com-
plex matrices, a more general expression, different from Eq.
�13�, is used to calculate the density matrix. As such a case,
here let us assume that the Green function consists of matri-
ces depending on energy z and k point k, i.e.,

G�k��z� = �zS�k� − H�k� − ��k��z��−1, �B1�

=� dE
g�k��E�
z − E

, �B2�
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=�
n=0

�
��n,k�

zn+1 , �B3�

where z and E are complex and real variables, respectively,
and the second and third lines are the Lehmann and moment
representations of the Green function. It is assumed that
poles of the Green function Eq. �B1� are located on the real
axis, which is verified at least in case the self-energy matrix
� is calculated using the surface Green function.6 Consider-
ing that off-diagonal elements of g�k��E� are complex in gen-
eral, the density of states n�k��E� depending on k is given
using both the retarded and advanced Green functions G�k�

��E+ i0+� and G�k��E− i0+�, by

n�k��E� = Im�− 1

�
�G�k��E + i0+� − G�k��E − i0+�
� ,

�B4�

where the factor 2 due to spin multiplicity was considered.
Thus, the density matrix � can be evaluated by

� =
1

Vc
�

BZ
dk3�

−�

�

dEn�k��E�f�E� ,

=
1

Vc
�

BZ
dk3��r

�k� − �a
�k�
 , �B5�

where Vc is the volume of the unit cell, �BZ represents the
integration over the first Brillouin zone, and �r

�k� and �a
�k� are

defined by

�r
�k� = Im�− 1

�
�

−�

�

dEG�k��E + i0+�f�E�� , �B6�

�a
�k� = Im�− 1

�
�

−�

�

dEG�k��E − i0+�f�E�� . �B7�

Thus, we see that from the Green function defined by Eq.
�B1� the density matrix � can be easily evaluated using the
proposed method, since �r

�k� and �a
�k� are computed in the

same way as for Eq. �13� by considering the contour inte-
grals in the upper and lower complex planes, respectively.

APPENDIX C: IN CASE OF THE DERIVATIVE OF THE
FERMI-DIRAC FUNCTION

The calculations of physical quantities such as electric
and thermal conductances require integrals with the deriva-
tive of the Fermi-Dirac function with respect to energy. In
the Appendix C I give the outline for applying the proposed
method to such cases. By making use of the continued frac-
tion representation Eq. �1� of the Fermi-Dirac function, the
derivative of the Fermi-Dirac function can be expressed as
follows:

df�z�
dz

= ��− f�z� + �f�z��2
 ,


−
�

4
+

1

�
�

p,p�=1

2N RpRp�

�z − �p��z − �p��
,

=−
�

4
+ 2�

p=1

2N
Rpwp

zp − �p
+

1

�
�
p=1

2N
Rp

2

�zp − �p�2 , �C1�

where �N+i= ��i�*, RN+i=Ri, and wp is given by

wp = �
p��p

2N
iRp�

zp� − zp

. �C2�

It is found from Eq. �C1� that the derivative of the Fermi-
Dirac function approximated by the finite continued fraction
possesses the second order poles of the continued fraction as
well as the first order poles. Therefore, if the Green function
is analytic around the pole, by Taylor expanding it at the pole
�p as

G�z� = G��p� + G���p��z − �p� + ¯ , �C3�

one has to include contributions of the derivative of the
Green function G� with respect to energy which can be
evaluated through a response function calculated from the
Green functions.
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