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Variationally optimized atomic orbitals for large-scale electronic structures
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A simple and practical method for variationally optimizing numerical atomic orbitals used in density func-
tional calculations is presented based on the force theorem. The derived equation provides the same procedure
for the optimization of atomic orbitals as that for the geometry optimization. The optimized orbitals well
reproduce convergent results calculated by a larger number of unoptimized orbitals. In addition, we demon-
strate that the optimized orbitals significantly reduce the computational effort in the geometry optimization,
while keeping a high degree of accuracy.
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[. INTRODUCTION wherei is a site indexa=(plm) an organized orbital index,
and ¢;,=YnRipim- For simplicity we consider only
During the last decade, to extend the applicability of den-nonspin-polarized systems and an non-Bloch expression of
sity functional theorie$DFT) to realistic large systems, great the one-particle wave functions, but the extentions of the
efforts have been made for developinghN)(methods of the  below description to spin-polarized systems and Bloch wave
eigenvalue problem® and for making efficient and accurate functions are straightforward. Note that a radial wave func-
localized orbitals™'° as a basis set being suitable forN)(  tion Ripim depends on not only an angular momentum quan-
methods. Among these studies, one of important and unréum numbe, but also a site indek a multiplicity indexp,
solved problems is how atomic orbitals as a basis set arand a magnetic quantum numbex To give a variational
constructed to maximize both the computational efficiencydegree of freedom ap,,, we furthermore expang, , using
and accuracy. One expects that a basis set such as doulpiémitive orbitals;,, as follows:
valence orbitals with polarized orbitals for valence electrons
provides a way for balancing a relatively small computa-
tional effort and a considerable degree of accuracy. Along
this line, accurate basis sets were constructed in several
ways’ % Kennyet al.constructed a basis set, so that atomicwhere n=(glm), in which the indiced and m denote the
orbitals span the subspace defined by selected and occupig@me as those of the index andy;,=Y R/, - Note that a
states of reference systems as much as possihiegquera primitive radial wave functiorR/y, , which is discussed later
et al. optimized the shape and cutoff radii of atomic orbitalson, is independent om, and that the coefficients;,, are
for reference systems by using the downhill simplexindependent variables on the eigenstateSubstituting Eq.
method® However, the transferability of these optimized or- (2) into Eq. (1), we have
bitals might be restricted to systems similar to the reference
systems used for the optimization in terms of atomic envi-
ronments and states such as the coordination number and the
charge state. A more complete treatment is to optimize ) . o
atomic orbitals of each atom located on different environ-Although the expansion of a KS orbital by E@) is linear-
ments in a given systet.In addition, the complete optimi- ized for each variable,, i, or a;.q, however, the primitive
zation procedure should be simple and efficient practicallyorbitals x;,, are expanded by the product of two variables
In this paper, to overcome the difficulty, we present a simpleC..i« @Nda;,q iN @ nonlinearized form. Therefore, it is diffi-
and practical method, based on the force theorem, for varigult to directly find the minimum of the KS total ener@y,

tionally optimizing numerical atomic orbitals of each atom in for the ground state with respect¢g ;, anda;,q as a gen-
a given system. eralized eigenvalue problem which can be derived in the

usual LCAO. To avoid the difficulty, here, we propose a two
step optimization scheme, in which the coefficieatg, are
II. VARIATIONAL OPTIMIZATION optimized afterc,, ;, are determined with a set of fixet,q -
_ _ ConsideringdEq/dc, i,=0 for the KS total energyEy
Let us expand a Kohn-ShafKS) orbital ¢, of a given  with the orthonormalization relatiotiy,|,)= 8,, among
system using numerical atomic orbitads, in a form of  one-particle wave functiong, and fixed contraction coeffi-
linear combination of atomic orbitald CAO): cientsa; ,q, we have a well-known KS matrix equation with
respect to the coefficie, ;, as follows:

¢ia(r>=§ QiagXiy(1), )

wu(r):% % C,u,iaaiaq)(in(r_ri)' (3)

«/w):% Criabialr—T7), (1) % <¢ialﬂ|¢jﬁ>cﬂ,m=e% (Do bip)Crip, @
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whereH is a KS Hamiltonian ané , is a KS eigenvalue of IE 2
the system. There is no restriction to solve E.or to find AIE > Diagiipg’| — : (8)
9Bt/ 9C,.1,=0. SO, we can use any solution method which ted \ g’ 98;pq' | 4(n)
could be an exact diagonalization method, iterative methods
such as Car-ParinelldlCP) method! and conjugate gradient JE JE
(CG) method*? and ON) methods. On the other hand, re- B= X Diugisy o ( o ) .9
gardingc, i, as dependent variables @f,q and assuming iag.jBa’ Piaq) 4 9jpqr ) 4(m)
that the Kohn-Sham equation is solved self-consistently with
respect tac,, i, , We can derive the following equation based where
on the force derivation of nonorthogonal orbitals as follows:
Diagipar=OiajpHinin ~EiaipSinin (10

IE o _ OBt Op(r)
ﬁaiaq 5p(r) 5aiaq

= 42 nM.E Cﬂuiacuv1ﬂ<
" ia,jp

ad)ia ~
_|H|¢jﬁ>

0q; aq

E aCM’ia

ia8 98iaq

+4§ n, Cuip{ DialAl i)

:2% (OiajpXin Al i p) —EinjiplXinlbip)), (5

where n, is an occupancy number for the eigenstate
0i,,js a bond order, ant&;, ;5 an energy bond order. The
final equation in Eq(5) is derived by taking into account Eq.
(4) and the orthonormalization relatiofy,|i,)=6,,. It
should be noted that E¢B) excludes any derivative, and that
0i,,js and E;, jz only have to be evaluated for the con-
tracted atomic orbitad;, in Eq. (5), which implies that ad-
ditional computational costs are not required to evaluate E

Sham equation, Eq4), with a set of given coefficients
@j.q. then Eq.(5) gives the gradient oE, with respect to

aj.q Within small computational costs. This fact shows ap-
parently that the atomic orbitals can be optimized variation-
ally in the same two step procedure as that of the geomet@

optimization in terms ofa;,q instead of atomic positions.
Therefore, the contraction coefficierds, are optimized it-
eratively, coupled with the self-consistent solution of Ej,
as follows:

Step 1:  self-consistently solving Eq4),

JE
step2: alliV=al -\ ———| (6)
984/ 4(n)
n:=n-+1,

where an optimuna is determined, so that the norm of the
gradients aa=a("*1),

2
IE ot

N(n+l)=
gro=> e

ia,q

()

a(n+1)

becomes a minimum with respecttaunder the fixed;, ;4
and E;, jz. Substituting Eqs(5) and (6) into Eq. (7), and
considering JNI*1/on=0 with the fixed ©;,;, and
Ei.js, We havex=B/A for the minimum ong‘*lg with

with Hir),jn’E<Xi7]|H |Xj 7]’> andSr],jr]’E<Xi7]|Xj 7]’>' Taking

into account the sparseness of both the Hamitonian and over-
lap matrices in the real space, we find that the computational
efforts to evaluate Eq$8) and(9) scale linearly. Therefore,
we can easily evaluate, leading no intensive computational
demands. After achieving the self-consistent fi€hkCH for

Eq. (4) with respect to the coefficients, j, by an usual SCF
procedure, the contraction coefficierds,q are updated by
Eq. (6) and renormalized so that; , is normalized. Thus, the
two step optimization scheme enables us to optimize the con-
traction coefficients, . along the stationary minimum line

of the KS total energy functional with respectdp;,, , while
keeping(,|¥,)=46,,. Itis found that about five iterative
procedures of the two step optimization, which includes the
solution of Eq.(4) and the optimization o&;,4 by Eg. (6),

are enough to accomplish a sufficient convergence, gf

for our test systems. Again it should be mentioned that the
bond order and the energy bond order are required for only

(5). Once we obtain a self-consistent solution of the Kohnﬁ‘ne contracted atomic orbita, in Eg. (5). This is a crucial

point to make our optimization procedure efficient, since the
Kohn-Sham equation based on E4) can be solved for not
large x;,,, but smallg;,. Once the contraction coefficients
a;q are fixed after the orbital optimization, the Hamiltonian
nd overlap matrices are directly constructed for the small
i Without constructing the elements for the larger primi-
tive orbitals, since we can directly utilize the contracted or-
bital ¢, as a numerical table because of the use of numeri-
cal orbitals, which is also a reason why the optimization
scheme could be totally efficient.

A rather technical but important problem still remains in
the application of the two step optimization method. To
avoid the orbital optimization to a local minimum, we have
developed the following careful procedure to provide a good
initial guess for a set of coefficients,:

(I) The partition of the system. A cluster is constructed
including the nearest neighboring atoin®r each atomi.

(Il Solving of the Kohn-Sham equation of each cluster.
By non self-consistently solving the Kohn-Sham equation of
each cluster which is centered on an atgnwe obtain the
coefficientsd,, jqim for the atomi of an one-particle wave
function

@9)2,2 dv,qum)(qum (11
jqlm

with an eigenvalue:{".
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(IlN) Construction ofa from d. Then,ajgmq is given as

Aioimg=N SgMd,, ioim)dy,igimf[ (€ — u)/kgT], "o

(12

wheref is the Fermi functionu; a local chemical potential
for the clusteri, andN a normalization factor. For€p, the
coefficientsa;,mq are generated by the Gram-Schmidt or-
thonormalization froma;o;mg and d, jqim in order of the
magnitude off[ (el — u;)/ksT1Z|d, iqiml-

To find a good initial guess for the coefficieras,,, we
tried to estimate the ratio of coefficients, of the eigen-
states of the whole system expanded py from the local
cluster for each atom by the above treatment. Then, the  FIG. 1. The radial wave function for=0 of a carbon atom
eigenstates of the cluster are weighted by the Fermi functiorynder the confinement pseudopotential defined by(E8), where
so that the contribution of the lower states is taken into ac4.5(a.u), 4.3(a.u), and 3.0< 10* (Hartreg are used for, r,, and
count as much as possible. Also, the contraction coefficients, respectively.

@ipimg for 0<p are generated using the Gram-Schmidt

method to avoid the overcompleteness of contracted basigctions were used in our all DFT calculations. Also the
orbitals. We found that the procedure provides good initialreal space grid techniques were used with the energy cutoff
coefficientsa; .4 in all of our test systems, and did not ob- of 113 (Ryd) for numerical integration$ As the cutoff ra-
serve that the orbital optimization is trapped to any seriouglius and the number of orbitals increase, the total energy
local minimum, while the other trial was trapped to a local converges systematically. Thus, we see that the primitive or-
minimum often. The additional cost for the above procedureitals Xi, itself are systematic basis sets controlled by two
(D—=(lI) is almost negligible, when the orbital optimization simple parameters, the cutoff radius and the number of orbit-
method is applied as a preconditioning of the geometry opals, in the same manner as spherical wave basis’ dats.

Pseudo potential (Hartree)
o
o
uonouNg 8ABM [BIpeY

1-1.0

r(a.u.)

timization as discussed later on. addition, a relatively small number of orbitals may be needed
to obtain the convergent result compared to the spherical
ll. PRIMITIVE ORBITALS wave basis sets, since the primitive basis set is prepared for

N : , each element, unlike the spherical wave basis s@&tsese

The primitive orbitals;,, we used are eigenstates of an ;¢ rea50ns why we use the eigenstates of an atomic Kohn-
atomic ~ Kohn-Sham ~ equation ~ with  confinement gpam equation with the confinement pseudopotentials as the
pseudopotz_anUaI%. To vanish the radial wave functidRiy  primitive orbitals. A systematic study for convergence prop-
of the outside of the confinement radius, we modify the  grties as a function of the cutoff radius and the number
atomic core potentiaV/c,{r) in the all electron calculation  of orpitals will be presented for several elements including
of an atom and the generation of pseudopotential as followsirst row elements, alkaline metals, and transition metals

r 7 elsewhere.
-Z forr<r,, For the later discussion, here, we introduce an abbrevia-
r tion of the basis orbital a€4.5s62* p62, whereC indicates
3 the atomic symbol, 4.5 is the cutoff radiug (a.u) used in
Veord ) =9 > b forry<r<rg, (13 the generation, s62 means that two optimized orbitals are
n=0
h forr.<r, -t06f -~~~
L v \‘H—Q:_.\‘_._‘_.
wherebg, by, b,, andb; are determined, so that the value §—10-7- e 35w
and the first derivative are continuous at bethandr.. £ «—sp | s+prd— T FTielw
Figure 1 shows radial wave functions fb=0 of a carbon =108 : o]
atom under the confinement pseudo potential. The eigen- & ‘ T eaky
states construct an orthonormal basis set at the same atomic & -10.9r : T
position and vanish beyond. within the double precision. g \?\E_;m
Because of the complete vanishing tail of numerical orbitals, -11.08 3 T
we find that nonzero elements of Hamiltonian and overlap R B M

10 20 30 40 50
Number of Bases per Atom

o

matrices can be exactly proportional to the number of atoms.
In Fig. 2 the total energy for a carbon dimer calculated using
the eigenstates as a basis set is shown as a function of the F|G. 2. The total energy for a carbon dimer calculated using the
number of orbitals for various cutoff radii;. Factorized eigenstates as a basis set as a function of the number of basis or-
norm conserving pseudopotentidlsand the local density bitals per atom for the cutoff radius of 3.5, 4.0, 4.5, 5.0, 5.5, and
approximation (LDA)!* to the exchange-correlation inter- 6.0 (a.u).
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C, .
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S 05pF N e primitive 1
= -8.00r —
k] T R | A
L = =~ N A SNV
0 10 20 30 40 50 0.0 L L L L L S N
j _' ) j 0.0 1.0 2.0 3.0 4.0 5.0
-5.64r Diamond 7 r (a_u_)
—— unopt (C4.5-smpm)
-5.66f —*— rest (C45-s5mpSm) ] FIG. 4. The radial wave function of the minimal orbitals ob-
B unrest (04:5-s5mpsm) tained by the restricted optimization for the diamond and the lowest
-5.681 1 primitive orbitals of a carbon atom. The optimization was done in
the same conditions as those in Fig. 3.
_5.70 1 1 1 1
0 5 10 15 20

Number of Bases courages us to use the restriction, since the restricted optimi-
zation guarantees the rotational invariance of the total en-
FIG. 3. The total energy for a carbon dimes,@ methane CHH  grgy. In Fig. 4 the radial parts of the minimal orbitals
and the diamond as a function of the number of unoptimize®  ,piained by the restricted optimization for the diamond are
opY orbitals and optimized orbitals witfres) and without(unresl g6y with those of the lowest primitive orbitals of a carbon

the restriction. The total energy and the number of orbitals are dez;, ) 6 comparison. It is observed that the tails of both the
fined as those per atom for,@nd the diamond, and as those per

optimizeds and p orbitals shrink compared to the primitive
molecule for CH. The energy cutoff .Of 11.3’ 113, and Zzqu) orbitals, which clearly reveals that the basis orbital can au-
were used for the numerical integrations in,CH,, and the dia-

mond, respectively. The two step convergence gfiCdue to the tomatically vary within the cutoff radius to minimize the

inclusion ofd orbitals. totall energy. . . . S
Finally, as an illustration of the orbital optimization, we

performed the geometry optimization with the orbital optimi-
zation as a preconditioning for the most stable conformer of
a neutral glycine molecute'® which is the smallest amino
acid. Before doing the geometry optimization, the orbital op-
timization was performed by five iterative steps, which in-
cludes ten SCF loops per step, for an initial structure opti-
mized by a molecular mechaniceMM’s). Then, the
IV. NUMERICAL RESULTS geometry optimization was done using the optimized orbitals
by fifty steepest deceSD) steps with a variable prefactor

Figure 3 shows the convergence properties of total eneffor accelerating the convergence, which includes twenty SCF
gies for a carbon dimer £ a methane molecule GHand loops per step. The optimized geometrical parameters are
the diamond as a function of the number of unoptimizedgiven in Table | together with the total energy and the com-
and optimized orbitals. The orbital optimization was doneputational time per MD step. In the case of the unoptimized
by five iterative steps according to E(f), in which each orbitals SN, TN, and TNDP, as the number of orbitals in-
step includes ten SCF loops. We see that the unoptimizecrease, we find the decrease of the total energy and the con-
orbitals provide systematic and rapid convergent results fovergent geometrical parameters comparable to the experi-
not only molecules € and CH, but also a bulk system mentat® and the other theoretical valuEsAlthough there
diamond, as the number of orbitals increase. Moreover, reare some deviations in the optimized parameters calculated
markable convergent results are obtained using the optimizeasing TNDP from the other theoretical vali@she devia-
orbitals for all systems. The small optimized orbitals rapidlytions may be attributed to the pseudo potentials rather than
converge to the total energies calculated by a larger numbehe basis orbitals, since we verified that the optimized param-
of unoptimized orbitals, which implies that the computa- eters of the glycine depend on the cutoff radii in the pseudo
tional effort can be reduced significantly with a high degreepotential generation. Comparing to the unoptimized and op-
of accuracy. For three systems the effect of the restrictiotimized minimal orbitals SN and SN it is found that the
for the orbital optimization is almost negligible, which en- geometrical parameters are significantly improved without

constructed from six primitive orbitals for theorbital, and
the asterisk signifies the restricted optimization that the ra
dial wave functionR is independent on the indar. In case

of snn such ass66, corresponding to no optimizatiomrs
can be simplified asns
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TABLE |. Optimized geometrical paramete@d and degreesof the most stable conformer of a neutral glycine molecaldenotes the
atomic symbol C, N, or O. The computational time per MD step was measured using one CPU on a Sharp Mebius PC-GP1-C7U. The energy
cutoff of 113(Ryd) was used for the numerical integrations in all calculations. The results by the other theory were taken from Ref. 15, and
the experimental values from Ref. 16.

SN TN TNDP SN SNP Other theory  Expt.
H4.0s1 H4.0s3 H4.0s3p2 H4.0s31* H4.0s31* p21* LDA/DZP

A4.5s1lpl A4.5s3p3 A4.5s3p3d2 A4.5s31*p31* A4.5s32*p31*d21*  Full potential
r(c-C) 1.555 1.535 1.528 1.515 1.528 1.510 1.532
r(N-C) 1.530 1.480 1.490 1.502 1.444 1.439 1.469
r(C=0) 1.353 1.231 1.235 1.281 1.238 1.218 1.207
r(C-0) 1.498 1.365 1.349 1.416 1.350 1.348 1.357
r(O-H) 1.144 0.998 0.987 1.010 0.995 0.988
£ (NCC) 104.8 106.5 108.2 108.4 108.8 114.8 112.1
£ (CC=0) 136.8 127.9 128.3 128.9 125.9 124.9 125.1
£ (COH) 96.8 107.9 105.7 105.8 106.8 105.6
C=0:---N 3.132 2.998 2.905 2.998 2.882 2.827
Energy(Hartreg —55.662 —55.981 —56.106 —55.818 —56.036
Time(s)/MD step 32 86 217 34 84

increasing the computational time. In case of the optimized V. CONCLUSIONS

orbitals SNR remarkable improvements are ob.tained.in both 14 conclude, we have developed a simple and practical
the geometrical parameters and the computational time. Th,ethod based on the force theorem for variationally optimiz-
optimized orbitals SNPprovide a convergent result compa- ing numerical atomic orbitals used in density functional cal-
rable to TNDP with a great reduction of the computationalcylations. The optimization algorithm similar to the geom-
time. The computational time required for the orbital optimi- etry optimization allows us to fully optimize atomic orbitals
zation of SN occupies only 3% of that of the whole calcu- within a cutoff radius for each atom in a given system. The
lation. So the orbital optimization can be regarded as a preflustration of geometry optimization with the orbital optimi-
conditioning before doing the geometry optimization or thezation for a small molecule clearly shows that the small op-
molecular dynamics. Of course, it is possible to perform theimized orbitals promise to greatly reduce the computational
orbital optimization during the geometry optimization. It is effort with a high degree of accuracy.

worth mentioning that the orbital optimization can be com-

bined with an ON) method!~® since only 0i,js and
Ei.js, Which are calculated by the &) method, are re-
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