up


Electric Polarization by Berry Phase: Ver. 1.1

Taisuke Ozaki, ISSP, the Univ. of Tokyo

The polarization coming from the electric contribution is given by

𝐏=βˆ‘k=13Pi⁒𝐑i. (1)

Pi can be evaluated by the following Berry phase formula [1, 2]:

2⁒π⁒Pi = 𝐆i⋅𝐏 (2)
= -e(2⁒π)3β’βˆ‘Οƒβˆ«B𝑑k3⁒𝐆iβ‹…(βˆ‚βˆ‚β‘π€β€²β’Ξ·Οƒβ’(𝐀,𝐀′))𝐀′=𝐀,

where ∫B means that the integral over the first Brillouin zone of which volume is VB. The quantum phase ησ⁒(𝐀,𝐀′) is given by

ησ⁒(𝐀,𝐀′)=Im⁒{ln⁒(det⁒⟨uσ⁒μ(𝐀)|uσ⁒ν(𝐀′)⟩)}, (3)

where ΞΌ and Ξ½ run over the occupied states. The integration and derivative in Eq.Β (2) are approximated by a discretization:

𝐆iβ‹…πβ‰ˆ-eVB⁒N2⁒N3β’βˆ‘Οƒβˆ‘i2=0,i⁒3=⁒0N2-1,N3-1βˆ‘i1=0N1-1ησ⁒(𝐀i1⁒i2⁒i3,𝐀i1+1⁒i2⁒i3β€²). (4)

Noting that

ΟˆΟƒβ’ΞΌ(𝐀)⁒(𝐫) = ei⁒𝐀⋅𝐫⁒uσ⁒μ(𝐀)⁒(𝐫), (5)
= 1Nβ’βˆ‘nNei⁒𝐑nβ‹…π€β’βˆ‘i⁒αcσ⁒μ,i⁒α(𝐀)⁒ϕi⁒α⁒(𝐫-Ο„i-𝐑n),

the overlap matrix ⟨uσ⁒μ(𝐀)|uσ⁒ν(𝐀+Δ⁒𝐀)⟩ in Eq.Β (3) is evaluated as

⟨uσ⁒μ(𝐀)|uσ⁒ν(𝐀+Δ⁒𝐀)⟩ = βŸ¨ΟˆΟƒβ’ΞΌ(𝐀)|ei⁒𝐀⋅𝐫⁒e-i⁒𝐀⋅𝐫⁒e-i⁒Δ⁒𝐀⋅𝐫|ΟˆΟƒβ’Ξ½(𝐀+𝚫⁒𝐀)⟩, (6)
= βŸ¨ΟˆΟƒβ’ΞΌ(𝐀)|e-i⁒Δ⁒𝐀⋅𝐫|ΟˆΟƒβ’Ξ½(𝐀+𝚫⁒𝐀)⟩,
= 1Nβˆ‘n,nβ€²βˆ‘i⁒α,j⁒βcσ⁒μ,i⁒α(𝐀)⁣*cσ⁒ν,j⁒β(𝐀+𝚫⁒𝐀)e-i⁒𝐀⋅(𝐑n-𝐑nβ€²)Γ—
βŸ¨Ο•i⁒α⁒(𝐫-Ο„i-𝐑n)|e-i⁒Δ⁒𝐀⋅(𝐫-𝐑nβ€²)|Ο•j⁒β⁒(𝐫-Ο„j-𝐑nβ€²)⟩.

Defining that

𝐫′=𝐫-Ο„i-𝐑n, (7)

we have

⟨uσ⁒μ(𝐀)|uσ⁒ν(𝐀+Δ⁒𝐀)⟩ = 1Nβˆ‘n,nβ€²βˆ‘i⁒α,j⁒βcσ⁒μ,i⁒α(𝐀)⁣*cσ⁒ν,j⁒β(𝐀+𝚫⁒𝐀)e-i⁒𝐀⋅(𝐑n-𝐑nβ€²)Γ— (8)
βŸ¨Ο•i⁒α⁒(𝐫′)|e-i⁒Δ⁒𝐀⋅(𝐫′+Ο„i+𝐑n-𝐑nβ€²)|Ο•j⁒β⁒(𝐫′+Ο„i-Ο„j+𝐑n-𝐑nβ€²)⟩.

Since each term depends on only the relative position 𝐑n-𝐑nβ€², Eq.Β (8) becomes

⟨uσ⁒μ(𝐀)|uσ⁒ν(𝐀+Δ⁒𝐀)⟩ = βˆ‘nβˆ‘i⁒α,j⁒βcσ⁒μ,i⁒α(𝐀)⁣*⁒cσ⁒ν,j⁒β(𝐀+𝚫⁒𝐀)⁒ei⁒𝐀⋅𝐑nΓ—βŸ¨Ο•i⁒α⁒(𝐫′)|e-i⁒Δ⁒𝐀⋅(𝐫′+Ο„i-𝐑n)|Ο•j⁒β⁒(𝐫′+Ο„i-Ο„j-𝐑n)⟩, (9)
= βˆ‘nβˆ‘i⁒α,j⁒βcσ⁒μ,i⁒α(𝐀)⁣*⁒cσ⁒ν,j⁒β(𝐀+𝚫⁒𝐀)⁒ei⁒𝐀⋅𝐑n⁒e-i⁒Δ⁒𝐀⋅(Ο„i-𝐑n)β’βŸ¨Ο•i⁒α⁒(𝐫′)|e-i⁒Δ⁒𝐀⋅𝐫′|Ο•j⁒β⁒(𝐫′+Ο„i-Ο„j-𝐑n)⟩,

The exponential function in Eq.Β (9) can be approximated by

e-iβ’Ξ”β’π€β‹…π«β€²β‰ˆ1-i⁒Δ⁒𝐀⋅𝐫′. (10)

Thus, Eq.Β (9) becomes

⟨uσ⁒μ(𝐀)|uσ⁒ν(𝐀+Δ⁒𝐀)⟩ = βˆ‘nβˆ‘i⁒α,j⁒βcσ⁒μ,i⁒α(𝐀)⁣*cσ⁒ν,j⁒β(𝐀+𝚫⁒𝐀)ei⁒𝐀⋅𝐑ne-i⁒Δ⁒𝐀⋅(Ο„i-𝐑n)Γ— (11)
{βŸ¨Ο•i⁒α⁒(𝐫′)|Ο•j⁒β⁒(𝐫′+Ο„i-Ο„j-𝐑n)⟩-iβ’Ξ”β’π€β‹…βŸ¨Ο•i⁒α⁒(𝐫′)|𝐫′|Ο•j⁒β⁒(𝐫′+Ο„i-Ο„j-𝐑n)⟩},

where the overlap integral is evaluated in momentum space, and the expectation value for the position operator is evaluated using the same real space mesh as for the solution of Poisson’s equation in OpenMX.

References

  • [1] R. D. King-Smith, and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
  • [2] R. Resta , Rev. Mod. Phys. 66, 899 (1994).