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A projector expansion method is presented for an efficient and accurate implementation of the first-principles
electronic structure calculations using pseudopotentials and atomic basis functions. By expressing the rapidly
varying local potential in the vicinity of nuclei by a separable projector expansion, the difficulty involved in the
grid integration using the regular real-space grid is remarkably reduced without increasing the computational
effort. To illustrate the capability, it is shown that the proposed method significantly suppresses not only a
spurious oscillation in the energy curve for the atomic displacement involved in a weak interaction such as
hydrogen bonding, but also the dependence of optimized structure on relative position to the real-space grid in
the geometry optimization within a modest grid fineness.
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I. INTRODUCTION

The electronic structure method based on a linear combi-
nation of numerical atomic local basis orbitals �LCAO�1–5

and pseudopotentials6,7 is a possible way of extending the
applicability of a density functional theory �DFT�8 to large-
scale systems, since the generalized eigenvalue problem with
the resultant sparse matrices can be solved by O�N�
methods.9–14 The pioneering work by Sankey et al.1 and its
generalization to a fully self-consistent field �SCF� calcula-
tion by the SIESTA group2 enable us to deal with large-scale
systems within a fully self-consistent DFT. However, in gen-
eral, one of the difficult problems in the implementation of
these LCAO methods is how the matrix elements for the
effective potential are accurately evaluated within a modest
computational effort.2,3,15–18 Although this numerical integra-
tion for the construction of matrix elements is a highly tech-
nical issue, serious problems enough to lose the validity of
calculations are often elicited when we calculate weakly in-
teracting systems such as hydrogen bonding molecules and
include deep semicore states in pseudopotentials.2 Due to the
nonintegrable form of the effective potential in the conven-
tional DFT, the numerical integration is indispensable to con-
struct the matrix elements, even if analytic basis functions
such as Gaussian functions are used. While a scheme to
avoid the numerical integration is to fit the potential into
integrable analytic functions,17,20 however, it can be regarded
as just a replacement of the numerical integration with the
numerical fitting.

In the LCAO methods, usually, two kinds of numerical
grids are used for the numerical integration for the construc-
tion of matrix elements.2,3,15–19 One of them is a grid decom-
posed into radial and angular parts such as Gauss-Legendre
and Lebedev grids which are combined with a partitioning
scheme to decompose a multicenter integral into one-center
integrals.3,15–19 The other is a regular real-space grid similar
to that used in conventional plane-wave DFT methods.2 Al-

though the former possesses a benefit that the total energy is
independent of the rotation of system unlike the latter, the
latter is superior to the former in terms of computational
efficiency. Since all the basis functions use the same regular
real-space grid, once the value of basis function on grid is
calculated and stored in the computational memory before
the SCF calculation, there is no need for the recalculation of
the value of basis function on grid during the SCF calcula-
tion. Therefore, in the latter, the matrix elements are quite
efficiently constructed in an element-by-element fashion for
nonzero values of basis functions on grid stored in the com-
putational memory. On the other hand, in the former, it is
difficult to store the value of basis function on grid because
of the requirement of the extensive memory size, since the
quadrature grid is determined for each set of two atoms.

Although the regular real-space grid possesses an advan-
tage in terms of computational efficiency, however, serious
problems remain in the grid integration using the regular
real-space grid, since the total energy depends on the relative
position between the system and the grid.2,21,22 A typical il-
lustration is that the optimized structure depends on the ini-
tial arrangement relative to the grid position. This depen-
dence causes a severe problem when weakly interacting
systems such as hydrogen bonding molecules are calculated.
In such a system a highly fine grid is needed to obtain a
convergent result, which demands great computational re-
sources. The same problem involved in the real-space grid
integration is also reported in other real-space methods,21,22

which implies that the difficulty involved in the grid integra-
tion is a major concern in the efficient and accurate imple-
mentation of real-space methods. Thus, our aim is to estab-
lish a method which addresses the regular real-space grid for
the simplicity and overcomes the difficulty involved in the
grid integration within a modest computational effort. In this
paper, we present a projector expansion method in which a
rapidly varying local potential in the vicinity of nuclei is
expressed by a separable projector expansion, and thereby
the contribution of the rapidly varying local potential to ma-
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trix elements is accurately calculated in the momentum space
instead of the real space. Since the real-space integration is
applied to only slowly varying parts in the effective poten-
tial, as a result, the difficulty involved in the grid integration
is remarkably reduced. This paper is organized as follows. In
Sec. II, a projector expansion method is presented in order to
overcome the difficulty involved in the grid integration in the
first-principles electronic structure calculations using atomic
basis functions. In Sec. III, as illustrations of the accuracy of
the proposed method, it is shown that the projector expan-
sion method significantly suppresses not only a spurious os-
cillation in the energy curve for the atomic displacement in-
volved in a weak interaction such as hydrogen bonding, but
also the dependence of optimized structure on relative posi-
tion to the real-space grid in the geometry optimization
within a modest grid fineness. In Sec. IV, we summarize the
projector expansion method and the capability. Finally, in the
Appendix, the analytic evaluation of force on atom in the
LCAO method using the projector expansion method is
briefly described.

II. PROJECTOR EXPANSION

Let us start our formulation from the total energy expres-
sion of the DFT �Ref. 8� to elucidate the difficulty involved
in the grid integration. In the framework of atomic basis
functions ��i��,1,2,4,5 norm-conserving pseudopotentials,6,7

and a local density approximation �LDA� �Ref. 23� to the
exchange-correlation term, the total energy Etot in the DFT is
given by the sum of the kinetic energy Ekin, the electron-core
Coulomb energy Eec, the electron-electron Coulomb energy
Eee, the exchange-correlation energy Exc, and the core-core
Coulomb energy Ecc between pseudocore charges Zi and Zj
as follows:

Etot = Ekin + Eec + Eee + Exc + Ecc �1�

with

Ekin = 2 �
i�,j�

�i�,j�� d�r��i�T̂� j�, �2�

Eec = Eec
�L� + Eec

�NL� =� d�r�n�r��
k

VL,k�r − Rk�

+� d�r�n�r��
k

VNL,k�r − Rk� , �3�

Eee =
1

2
� � d�r�d�r��

n�r�n�r��
�r − r��

, �4�

Exc =� d�r�n�xc�n� , �5�

Ecc =
1

2�
i,j

ZiZj

�Ri − R j�
, �6�

where i and � are the site and basis function indices, respec-
tively. �i�,j� is a density matrix associated with two basis

functions �i� and � j�, and is defined by ������

−	�ci�,�cj�,� with the LCAO coefficient ci�,�, the one-
particle eigenenergy ��, the chemical potential 	, and a step
function ��x�. n is the electron density defined by
2�i�,j��i�,j��i�� j�. VL,k and VNL,k are the local part and non-
local part in the norm-conserving pseudopotential of atom k,
respectively. The factor 2 in Ekin and n is for the spin multi-
plicity. In this formulation, we consider only the non-spin-
polarized case, non-Bloch expression of one-particle wave
functions, and the LDA for simplicity, but the extensions of
the below description to the spin-polarized case, the Bloch
expression, and a generalized gradient approximation �GGA�
�Ref. 24� to the exchange-correlation term are straightfor-
ward. Although the expression Eq. �1� is commonly used, it
can be transformed into a more tractable form without any
approximation.1,2 Reorganizing the sum of Eec

�L�, Eee, and Ecc

by introducing an atomic electron density ni
�a�, we can re-

write the sum Eec0+Eee+Ecc by that of two majority contri-
butions Ena and Eecc consisting of short-range terms and a
minority contribution E
ee consisting of a long-range term as
follows:

Eec
�L� + Eee + Ecc = Ena + Escc + E
ee �7�

with

Ena =� d�r�n�r��
i

Vna,i�r − Ri� , �8�

Escc =
1

2�
i,j
� ZiZj

�Ri − R j�
−� drni

�a��r − Ri�VH,j
�a� �r − R j�	 ,

�9�

E
ee =
1

2
� dr
n�r�
VH�r� , �10�

where a difference electron density 
n�r� is defined by the
difference between the electron density n and the sum, n�a�,
of atomic electron densities ni

�a� as


n�r� = n�r� − n�a��r� = n�r� − �
i

ni
�a��r� . �11�

Through this paper, when the site index is dropped in the
designation for a quantity specifiable with the site index, it
means the inclusion of the summation over the site index
except for the symbolic use. The atomic electron density ni

�a�

is evaluated from pseudo-wave functions under the confine-
ment potential in this study.4,5 So, 
n is considerably smaller
than n�a�. Also, it should be noted that ni

�a� is finite only
within the confinement radius rc,i. From the sum of the local
part of pseudopotential VL,i and a Hartree potential VH,i

�a� as-
sociated with the atomic electron density, a neutral atom po-
tential Vna,i is defined by Vna,i=VL,i+VH,i

�a�. The neutral atom
potential is spherical because of the spherical atomic electron
density, and becomes zero beyond the confinement radius rc,i
due to Gauss’s law, indicating that it is a short-range spheri-
cal potential. Since the electron density n can be evaluated
with the short-range quantities � and �, we see that the neu-
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tral atom potential energy Ena consists of short-range terms.
In addition to this, the screened core-core Coulomb energy
Escc is also evaluated by taking account of only the neigh-
boring atoms, since the second term in Eq. �9� becomes ex-
actly equivalent to the first term when rc,i+rc,j � �Ri−R j�,
and thereby the long-range terms in Eq. �9� vanish. There-
fore, the first and second terms being the majority contribu-
tions on the right-hand side of Eq. �7� are calculated by mak-
ing use of information of adjacent atoms in an O�N�
operation. Since the second term on the right-hand side of
Eq. �9� is a function of only the distance between two atoms,
it is accurately evaluated using a finer real-space grid, and
can be tabulated as a function of the distance between two
atoms at the first stage of the calculation. So, the evaluation
of Escc is far from the difficulty involved in the real-space
grid integration. The difference electron-electron Coulomb
energy E
ee is a minority contribution to the total energy, but
is constructed by a long-range term 
VH, since the difference
Hartree potential 
VH is associated with the every difference
electron density 
n�r� in the real space. It is worth mention-
ing that the Ewald summation over the core-core Coulomb
energy is not required by the reorganization for parts of the
total energy, which is one of advantages in the reorganized
expression for the total energy. Considering the variation of
the total energy with respect to the LCAO coefficient ci�,�,
we have a well-known generalized eigenvalue equation
Hc�=��Sc�, where H and S are a Hamiltonian matrix defined

by 
�i��Ĥ�� j�� and an overlap matrix defined by 
�i� �� j��,
respectively. In the Kohn-Sham �KS� Hamiltonian Ĥ� T̂
+Veff, the effective potential Veff is given by

Veff = �
k

VNL,k + �
k

Vna,k + 
VH + Vxc, �12�

where Vxc is the exchange-correlation potential. In the matrix
generalized eigenvalue equation, the matrix elements for the
overlap matrix, the kinetic operator, and the nonlocal part of
pseudopotential VNL,k can be evaluated by two-center inte-
grals. Since VNL,k is expressed by a separable projector
expansion,25,26 the matrix elements are reduced to a product
of two-center integrals. The resultant two-center integrals in
the evaluation of these matrix elements can be very accu-
rately evaluated using a finer grid in the momentum space
within almost the same computational time because they
only have to be evaluated once before the SCF loop.1,2

Rather than the matrix elements expressible by two-center
integrals, the difficulty involved in the grid integration comes
from the remaining contributions in the effective potential.
Although the matrix elements for the remaining potentials
Vna,k, 
VH, and Vxc has been evaluated by the grid integration
using the regular real-space grid,2 it can be pointed out that
the matrix element for the neutral atom potential Vna,k is
difficult to be accurately calculated within a modest fineness
of the real-space grid. Figure 1 shows potentials Vna, 
VH,
and Vxc in Eq. �12� along the bond axis in a carbon monoxide
�CO�. We can see that the neutral atom potential Vna rapidly
varies in the vicinity of nuclei, while the other potentials 
VH
and Vxc smoothly vary. The comparison suggests that a finer
grid is required to accurately evaluate the matrix elements

for the neutral atom potential Vna, and that the calculations
are not converged when a modest fineness of the real-space
grid is used as shown later on.

Thus, in order to suppress the difficulty involved in the
real-space grid integration, we propose a projector expansion
method to accurately evaluate the matrix elements for the
neutral atom potential Vna. The neutral atom potential Vna,i is
spherical and is defined within the finite range determined by
the cutoff radius rc,i of the confinement potential. Therefore,
the potential Vna,i can be expressed by a projector expansion
as follows:

V̂na,k = �
lm

Lmax

�
�

Nrad

�Vna,kR̄l�Ylm�
1

cl�

YlmR̄l�Vna,k� , �13�

where a set of radial functions �R̄l�� is an orthonormal set
defined by a norm 
r2drRVna,kR� for radial functions R and
R�, and is calculated by the following Gram-Schmidt
orthogonalization:26

R̄l� = Rl� − �



�−1

R̄l

1

cl

� r2drR̄l
Vna,kRl�, �14�

cl� =� r2drR̄l�Vna,kR̄l�. �15�

The radial function Rl� used in this study is pseudo-wave
functions for both the ground and excited states under the
same confinement potential as used in the calculation of the
atomic electron density ni

�a�.4,5 It is expected that the projec-
tor expansion rapidly converges with respect to the summa-
tion over R, since radial functions Rl� forms an orthonormal
set within the finite range of Vna,k. The projector expansion
for the neutral atom potential becomes exact when the sum-
mation over the angular and the radial parts goes to infinity.
The most important feature in the projector expansion de-
fined by Eq. �13� is that the neutral atom potential is ex-
pressed by a separable form, and thereby we must only
evaluate the two-center integrals to construct the matrix ele-
ments for the neutral atom potential once before the SCF

FIG. 1. Potentials Vna, 
VH, and Vxc in Eq. �12� along the bond
axis in a carbon monoxide �CO�.
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loop as well as the other two-center integrals. As discussed
above, the two-center integrals can be accurately evaluated
in the momentum space instead of the real space. Therefore,
we can avoid the grid integration using the real-space grid
for the rapidly varying neutral atom potential in the vicinity
of nuclei, indicating that the difficulty involved in the grid
integration is almost suppressed. It should be noted that the
computational time by the introduction of the projector ex-
pansion is not increased within the SCF loop, since the basis
functions and the projectors in Eq. �13� are Fourier trans-
formed once at the first stage of calculations, and the two-
center integrals between them are evaluated before the SCF
loop. Furthermore, the computational demand before the
SCF loop is not large. In fact, the comparison of the total
computational time shows that the computational time by the
projector expansion method is only 13% longer than that by
the conventional method with the same real-space grid fine-
ness as used in the projector expansion method in a molecu-
lar dynamics �MD� simulation �100 MD steps� of a C60 mol-
ecule using four processors of Pentium 4. In addition to this,
these calculations can be easily parallelized on a parallel
computer due to no data communication in their parallel
computation.

There exists another advantage of the projector expansion
method. The choice of the local part in the separable pseudo-
potential is an important factor to enhance the transferability
of the pseudopotential. However, choosing a deep local part
has tended to be avoided because finer real-space mesh is
necessary to calculate converged results in the real-space
grid integration. In this projector expansion method, there is
no difficulty in the choice of the deep local part. Thus, it is
possible not only to choose the deep local part, but also to
include deep semicore states in the pseudopotential without
increasing computational effort.

If the same radial functions Rl� introduced in Eq. �14� are
used for the basis functions � j���Yl�m�Rl����� in the LCAO

method, the matrix elements 
�i��V̂na,k�� j�� for the neutral
atom potential are evaluated in case of i=k and/or j=k with-
out depending on the convergence of the summation over the

angular and radial parts. Since Rl���=��a�
�l����R̄l��, e.g., in

case of j=k, we have

V̂na,j�� j�� = �
�

a�
�l�����Vna,jR̄l��Yl�m�� = Vna,j�� j�� . �16�

Therefore, the one-center integral �i= j=k� and the two-
center integral �i=k or j=k� are highly accurately evaluated

in the evaluation of 
�i��V̂na,k�� j��, where 
�i��V̂na,k�� j�� is
referred to as integral to distinguish it from one- and two-
center integrals in the projector expansion defined by Eq.
�13�.

Although we are able to complete our formulation for the
projector expansion here, a different scheme is furthermore
introduced to accurately calculate the two-center integral �i
= j�k�. In this case, the neutral atom potential Vna,k and the
product of Rl� and Rl�
 are Fourier transformed at the first
stage of the calculation, and therefore the two-center integral
between the neutral atom potential and the product of two
basis functions is accurately evaluated in the momentum

space apart from the projector expansion by Eq. �13�. As a
result, all the one- and two-center integrals, which are large
components in the matrix elements, are calculated with a
high degree of precision without depending on the conver-
gence of the summation over the angular and radial parts.
The projector expansion by Eq. �13� is applied only for the
three-center integrals which are small components in the ma-
trix elements. Thus, the error associated with the conver-
gence of the summation in the projector expansion is signifi-
cantly suppressed.

There is another origin of the difficulty involved in the
real-space grid integration. The partial core correction �PCC�
charge density npcc is often used in Eq. �5� to take into ac-
count the nonlinearity in the exchange-correlation terms. In
this case, if a highly localized and large PCC charge density
in the vicinity of nuclei is employed, the difficulty associated
with Eq. �5� appears in the real-space grid integration. How-
ever, the difficulty can be avoidable by using a modest PCC
charge density. In addition, we can avoid the inclusion of the
large PCC charge density by using the pseudopotential in-
cluding the semicore states, since it is relatively easy to in-
clude the semicore states in the projector expansion method
as discussed above.

Here, we would like to comment on the evaluation of
force on atom in the LCAO method using the projector ex-
pansion scheme. The majority contributions to the total en-
ergy are expressed by the two-center integrals in the projec-
tor expansion method. So, the contribution to the force
associated with these parts can be analytically calculated by
differentiating the two-center integrals evaluated in the mo-
mentum space without any difficulty. On the other hand, the
remaining Exc and E
ee are evaluated using the real-space
grid integration. Consequently, it is not trivial whether the
force associated with Exc and E
ee is analytically appraisable
or not. However, in fact, it is easy to analytically evaluate the
force on atom in the regular real-space scheme coupled with
the projector expansion method. The details are given in the
Appendix.

III. NUMERICAL RESULTS

In this section, we show numerical results on the conver-
gence of the summation over the angular and radial parts in
Eq. �13� and demonstrate the capability of the projector ex-
pansion method for the suppression of the difficulty involved
in the real-space grid integration.

In Fig. 2 shows the convergence properties of the total
energy in a water molecule as a function of the max L, Lmax,
and the number of radial projectors, Nrad, in the summation
in Eq. �13�. In this study, an optimized double valence plus
polarization function �DVP� was used as a basis set.4,5 To
replace the deep core potential into a shallow potential, a
norm-conserving pseudopotential7 was used in a separable
form with multiple projectors.26 The cutoff radii of pseudo-
potentials are listed in Table I of Ref. 5. A generalized gra-
dient approximation �GGA� �Ref. 24� is used for the
exchange-correlation without the nonlinear partial core cor-
rection. The cutoff energy of 3600 �Ryd� and the Gauss-
Legendre grid27 of 128 were used for the evaluation of the
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two-center integrals �integrals� in the momentum space. The
cutoff energy for the real-space grid integration is given in
the captions of the figures and table. All calculations were
performed by our DFT code, OpenMX.28 From the conver-
gence properties, we see that the fully convergent result is
achieved when Lmax and Nrad approach 6 and 4, respectively.
In this case, we must use at least 2 for Lmax and Nrad to
accurately evaluate the one- and two-center integrals, since
the double valence plus polarization function is used as a
basis set. If the values are less than 2, the accuracy of the
one- and two-center integrals is not assured. Based on the
convergence properties, we generally use the following val-
ues: Lmax=Lmax

basis+4 and Nrad=4, where Lmax
basis is the maximum

angular momentum quantum number of basis functions.
From several test calculations, we confirm that the values for
Lmax and Nrad are enough to achieve the fully convergent
results for systems including other elements, while the re-
sults are not shown.

To illustrate the accuracy of the projector expansion
method, we show a comparison of the total energies of a
water dimer molecule, which is a typical hydrogen bonding
system with a weak interaction, calculated by the projector
expansion method �projector� and the grid integration using
the regular real-space grid �nonprojector� in Fig. 3. The total
energies are calculated as a function of the distance between
two oxygen atoms in water molecules, each of which pos-
sesses the experimental geometry. The dihedral angle be-
tween the water molecules is fixed at 90 degrees as depicted
in Fig. 3. We see that the total energy calculated by the grid
integration using the regular real-space grid with a lower

cutoff energy considerably oscillates, while the oscillation
can be suppressed using the high cutoff energy of 1000 Ryd.
This spurious oscillation is due to the inaccurate calculation
of the matrix elements for the neutral atom potential around
the tail of basis functions in the real-space grid integration.
On the other hand, the projector expansion method entirely
suppresses the spurious oscillation of the total energy curve
even in the lowest cutoff energy, thus indicating that the
contribution around the tail of basis functions to the matrix
elements associated with the neutral atom potential are accu-
rately calculated. The calculated energy curve by the projec-
tor method is completely consistent with that by the non-
projector method using 1000 Ryd. It should be noted that the
error in the calculation of the total charge is only 1.0e−5
even in the nonprojector method using 200 Ryd. Neverthe-
less, the spurious oscillation appears in amplitude of 0.001
Hartree in the nonprojector method. Our analysis clearly
shows that the spurious oscillation comes from the deep neu-
tral atom potential Vna, and is removed by replacing it by the
projector expansion.

As shown above, the spurious oscillation appears in the
energy curve calculated by the real-space grid integration.
Therefore, it would be considered that the optimized struc-
ture is trapped in a local minimum near the initial geometry
if the geometry optimization is performed using the real-
space grid integration, which could be a serious problem in
the calculations of weakly interacting systems. In contrast,
the difficulty is overcome in the projector expansion method.
To study this dependence of the optimized structure on the
initial geometry, we optimize the structure of a water mol-
ecule with various initial positions relative to the regular
real-space grid. The optimized structure by the real-space
grid integration strongly depends on the initial geometry
relative to the regular real-space grid as shown in Table I,

FIG. 2. Convergence properties of the total energy in a water
molecule as a function of �a� the max L, Lmax, and �b� the number of
radial projectors, Nrad, in the summation of Eq. �13�. The cutoff
energy of 201 �Ryd� was used for the grid integration using the
real-space grid. Nonprojector means that the real-space grid inte-
gration is employed for construction of the matrix elements for the
neutral atom potential.

FIG. 3. Total energy �hartree� of a water dimer as a function of
the distance between two oxygen atoms calculated by the projector
expansion method �projector� and the grid integration using the
regular real-space grid �nonprojector� for the neutral atom potential.
The value in parentheses means the cutoff energy for the grid inte-
gration using the regular real-space grid. Each energy curve was
shifted by adding a constant for ease of comparison.
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which indicates that the structure is trapped in a local mini-
mum near the initial geometry. On the other hand, the opti-
mized structure by the projector expansion method is almost
independent of the initial geometry relative to the regular
real-space grid, while the difference in the bond angle is
0.4 degrees at a maximum. These two clearly illustrate that
the difficulty involved in the grid integration is successfully
suppressed by introducing the projector expansion for the
rapidly varying neutral atom potential in the vicinity of nu-
clei.

IV. CONCLUSIONS

In the real-space implementation of the DFT using atomic
basis functions, one of difficult problems is how the matrix
elements for the effective potential are accurately evaluated
in an efficient numerical scheme within a modest computa-
tion effort. Especially, this problem becomes obvious when
weakly interacting systems such as hydrogen bonding mol-
ecules are calculated. In this context, to suppress the diffi-
culty involved in the regular real-space grid integration, we
have developed a projector expansion method which ex-
presses the rapidly varying neutral atom potential in the vi-
cinity of nuclei by a separable projector. The neutral atom
potential being the origin of the difficulty involved in the
real-space grid integration is factorized by the separable pro-
jectors, and the resultant two-center integrals are accurately
evaluated in the momentum space instead of the real space.
To illustrate the accuracy of the projector expansion method,

we have shown that the spurious oscillation in the energy
curve of a water dimer molecule is entirely suppressed and
that the optimized structure is almost independent of the ini-
tial geometry relative to the regular real-space grid within a
modest grid fineness. Thus, we conclude that the projector
expansion method is a highly useful technique for the accu-
rate and efficient implementation of the DFT based on the
LCAO method.
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APPENDIX

In this Appendix, we show an explicit expression for the
analytic evaluation of the force on the atom in the projector
expansion method. On the parts of the total energy expressed
by the two-center integrals �integrals�, its contributions to
the force are analytically calculated by differentiating the
two-center integrals �integrals� evaluated in the momentum
space. Then, each term in the summation over the discretized
radial grid in the momentum space are analytically differen-
tiating using cubic splines without any difficulty. Therefore,
we focus on the analytic differentiation of the remaining E
ee
and Exc with respect to atomic coordinate. So, this derivation
is a general formulation for the analytic force evaluation in
the LCAO method based on the grid integration using the
regular real-space grid. The difference electron-electron Cou-
lomb energy E
ee and the exchange-correlation energy Exc
can be discretized using the regular real-space grid as fol-
lows:

E
ee =
1

2
�V�

p

n�rp�
VH�rp� , �A1�

Exc = �V�
p

n�rp��xc�n�rp�� , �A2�

where p is the index in a vector form for specifying the
position in the regular real-space grid, and �V is the volume
per grid. Then, the derivative of E
ee with respect to the
atomic coordinate Rk is given by

�E
ee

�Rk
= �

p

�n�rp�
�Rk

�E
ee

�n�rp�
+ �

p

�na�rp�
�Rk

�E
ee

�na�rp�
. �A3�

In this study, 
VH�rp� is defined through the fast Fourier
transform �FFT� of 
n�r� by


VH�rp� = �
G


ṼH�G�eiG·r,

TABLE I. Dependence of optimized structure �Å and degrees�
and dipole moment �Debye� of a water molecule on the initial
position relative to the regular real-space grid. The initial Cartesian
coordinates �Å� are given by �a� O= �0.0,0.0,0.0�, H1

= �0.76,0.59,0.0�, H2= �−0.76,0.59,0.0�. The other initial Cartesian
coordinates are generated by rotating the coordinates �a� by �b�
Rx�30�, �c� Ry�40�Rx�30�, and �d� Rz�50�Ry�40�Rx�30�, where
Rx�30� means a rotational matrix which rotates the coordinate by 30
degrees on the x axis. The cutoff energy of 177 �Ryd� was used for
the grid integration using the regular real-space grid. The experi-
mental values are taken from Refs. 29 and 30.

Projector

Initial Geo. rOH ��HOH� 	B

a 0.990, 0.990 104.8 1.95

b 0.990, 0.990 104.5 1.95

c 0.990, 0.990 104.8 1.94

d 0.990, 0.990 104.9 1.95

NonProjector

Initial Geo. rOH ��HOH� 	B

a 0.989, 0.989 101.2 2.00

b 0.982, 0.982 102.0 1.98

c 0.993, 0.993 101.4 1.99

d 1.004, 0.993 107.0 1.92

Expt. 0.957 104.5 1.86
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=
4�

Nrsg
�
G

1

�G�2�p

n�rp�eiG·�r−rp�, �A4�

where Nrsg is the number of grid points in the regular real-
space grid. Considering this expression of 
VH�r�, we obtain
an explicit compact expression for the derivative of E
ee with
respect to n�rp� as follows:

�E
ee

�n�rp�
=

1

2
�V�
VH�rp� + �

q

n�rq�

�
VH�rq�
�n�rp� 	

=
1

2
�V�
VH�rp� +

4�

Nrsg
�
G

1

�G�2�q

n�rq�eiG·�rq−rp�	

= �V
VH�rp� . �A5�

Similarly, the derivative of E
ee with respect to na�rp� is
given by

�E
ee

�na�rp�
= −

1

2
�V�
VH�rp� − �

q

n�rq�

�
VH�rq�
�na�rp� 	 ,

=−
1

2
�V�
VH�rp�

+
4�

Nrsg
�
G

1

�G�2�q

n�rq�eiG·�rq−rp�	 ,

=− �V
VH�rp� . �A6�

The derivative of n�rp� with respect to Rk is found by con-
sidering the definition of n�r� as follows:

�n�rp�
�Rk

= �
i�,j�

�
�

� �ci�,�
*

�Rk
cj�,��i��r�� j��r�

+ ci�,�
* �cj�,�

�Rk
�i��rp�� j��rp�	

+ 2 �
�,j�

�k�,j�
��k��rp�

�Rk
� j��rp� . �A7�

The derivative of the LCAO coefficient c with respect to Rk
can be transformed to the derivative of the overlap matrix by
taking account of the orthonormality relation in one-particle
wave functions as usually made in the LCAO method with
the nonorthogonal basis set.1 Since the overlap matrix ele-

ment is a two-center integral, the matrix element and its de-
rivatives are evaluated in the momentum space as well as the
other two-center integrals. Also, the derivative of the basis
function � with respect to Rk is analytically evaluated using
cubic splines because of the use of numerical basis function.
The derivative of na�rp� with respect to Rk is formed by only
the contribution from the same atomic site k due to the inde-
pendent grid position from the atomic positions as follows:

�na�rp�
�Rk

=
�nk

a�rp�
�Rk

. �A8�

The derivative of Exc with respect to the atomic coordinate
Rk is easily evaluated by

�Exc

�Rk
= �

p

�n�rp�
�Rk

�Exc

�n�rp�
= �V�

p

�n�rp�
�Rk

vxc�n�rp�� .

�A9�

Even for the GGA, the derivative of Exc with respect to the
atomic coordinate Rk is explicitly expressed, while the GGA
is implemented by a finite difference scheme in our imple-
mentation. As a result, the derivative of the discretized E
ee
and Exc are analytically evaluated. In addition, considering
the localized basis functions �, the evaluation of Eqs. �A3�
and �A9� can be quite efficiently performed in an O�N� op-
eration as well as the other contributions to the force.

The force on atom in the LCAO methods based on the
numerical grid integration has been often evaluated by ap-
pealing the Hellman-Feymann theorem with the Pulay
correction3 rather than strictly differentiating the discretized
energy expression. However, our derivation shows that it is
possible to evaluate the analytic force consistent with the
total energy in an efficient way, even though both the nu-
merical basis functions and the numerical grid integration are
introduced. A defect of the analytic forces derived here is
that they do not fulfill the law of action and reaction. The
defect comes from the independent determination of the
regular real-space grid from the atomic positions. Since the
grid position is fixed in the absolute Cartesian coordinate, the
calculated force suffers from a pinning effect. Nevertheless,
the effect is relatively small since only the minor contribu-
tions E
ee and Exc to the total energy are evaluated using the
real-space grid integration. A way of recovering the law of
action and reaction is to introduce an adaptive coordinate31

which is dependent on the atomic positions, while the sim-
plicity in the regular real-space grid is lost. A study toward
this direction will be a future work.
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