next up previous contents index
Next: Automatic running test Up: User's manual of OpenMX Previous: Tips for installation   Contents   Index

Test calculation

If the installation is completed normally, please move to the directory 'work' and perform the program, openmx, using an input file, Methane.dat, which can be found in the directory 'work' as follows:

     % ./openmx Methane.dat > met.std &
   
If you use the MPI version:
     % mpirun -np 1 openmx Methane.dat > met.std &
   
Or if you use the MPI/OpenMP version:
     % mpirun -np 1 openmx Methane.dat -nt 1 > met.std &
   

The test input file, Methane.dat, is for performing the SCF calculation of a methane molecule with a fixed structure (No MD). The calculation is performed in only about 19 seconds by using a 2.8 GHz Xeon machine, although it is dependent on a computer. When the calculation is completed normally, 11 files and one directory

      met.std               standard output of the SCF calculation    
      met.out               input file and standard output    
      met.xyz               final geometrical structure  
      met.ene               values computed at every MD step
      met.memory0           analysis for used memory 
      met.md                geometrical structures at every MD step 
      met.md2               geometrical structure of the final MD step 
      met.cif               cif file of the initial structure for Material Studio 
      met.tden.cube         total electron density in the Gaussian cube format 
      met.v0.cube           Kohn-Sham potential in the Gaussian cube format 
      met.vhart.cube        Hartree potential in the Gaussian cube format 
      met_rst/              directory storing restart files
are output to the directory, 'work'. The output data to a standard output is stored to the file, met.std which is helpful to know the calculation flow of SCF procedure. The file, met.out, includes computed results such as the total energy, forces, the Kohn-Sham eigenvalues, Mulliken charges, the convergence history for the SCF calculation, and analyzed computational time. A part of the file, met.out, is shown below. It is found that the eigenvalues energy converges by ten iterations within 1.0e-8 Hartree of the eigenvalues energy.

***********************************************************
***********************************************************
                  SCF history at MD= 1                    
***********************************************************
***********************************************************

   SCF=   1  NormRD=  1.000000000000  Uele= -3.799184452246
   SCF=   2  NormRD=  0.294505017736  Uele= -3.180922853695
   SCF=   3  NormRD=  0.088735677892  Uele= -3.371991788328
   SCF=   4  NormRD=  0.021096020042  Uele= -3.435330322070
   SCF=   5  NormRD=  0.006019683784  Uele= -3.449516147408
   SCF=   6  NormRD=  0.000784960310  Uele= -3.452522027174
   SCF=   7  NormRD=  0.000002401488  Uele= -3.453266301971
   SCF=   8  NormRD=  0.000000599833  Uele= -3.453266643608
   SCF=   9  NormRD=  0.000000184742  Uele= -3.453266654138
   SCF=  10  NormRD=  0.000000562332  Uele= -3.453266655628
Also, the total energy, chemical potential, Kohn-Sham eigenvalues, the Mulliken charges, dipole moment, forces, fractional coordinate, and analysis of computational time are output in 'met.out' as follows:
*******************************************************
        Total energy (Hartree) at MD = 1        
*******************************************************

  Uele.         -3.453266655628

  Ukin.          5.824571448666
  UH0.         -14.517598384684
  UH1.           0.012112580595
  Una.          -6.365977496421
  Unl.           0.681047544610
  Uxc0.         -1.609135574068
  Uxc1.         -1.609135574068
  Ucore.         9.551521413583
  Uhub.          0.000000000000
  Ucs.           0.000000000000
  Uzs.           0.000000000000
  Uzo.           0.000000000000
  Uef.           0.000000000000
  Utot.         -8.032594041787

  Note:

  Utot = Ukin+UH0+UH1+Una+Unl+Uxc0+Uxc1+Ucore+Uhub+Ucs+Uzs+Uzo+Uef

  Uene:   band energy
  Ukin:   kinetic energy
  UH0:    electric part of screened Coulomb energy
  UH1:    difference electron-electron Coulomb energy
  Una:    neutral atom potential energy
  Unl:    non-local potential energy
  Uxc0:   exchange-correlation energy for alpha spin
  Uxc1:   exchange-correlation energy for beta spin
  Ucore:  core-core Coulomb energy
  Uhub:   LDA+U energy
  Ucs:    constraint energy for spin orientation
  Uzs:    Zeeman term for spin magnetic moment
  Uzo:    Zeeman term for orbital magnetic moment
  Uef:    electric energy by electric field

  (see also PRB 72, 045121(2005) for the energy contributions)



  Chemical potential (Hartree)       0.000000000000

***********************************************************
***********************************************************
           Eigenvalues (Hartree) for SCF KS-eq.           
***********************************************************
***********************************************************

   Chemical Potential (Hartree) =   0.00000000000000
   Number of States             =   8.00000000000000
   HOMO =  4
   Eigenvalues
                Up-spin            Down-spin
          1  -0.64275532805563  -0.64275532805563
          2  -0.36132252595285  -0.36132252595285
          3  -0.36127775831387  -0.36127775831387
          4  -0.36127771549143  -0.36127771549143
          5   0.26426269019400   0.26426269019400
          6   0.26445588063823   0.26445588063823
          7   0.26445588290286   0.26445588290286
          8   0.31938640324811   0.31938640324811

***********************************************************
***********************************************************
                   Mulliken populations                    
***********************************************************
***********************************************************

  Total spin S =  0.000000000000

                    Up spin      Down spin     Sum           Diff
      1    C      2.363735209  2.363735209   4.727470417   0.000000000
      2    H      0.409066202  0.409066202   0.818132405   0.000000000
      3    H      0.409066194  0.409066194   0.818132388   0.000000000
      4    H      0.409066200  0.409066200   0.818132400   0.000000000
      5    H      0.409066195  0.409066195   0.818132389   0.000000000

  Decomposed Mulliken populations

    1    C          Up spin      Down spin     Sum           Diff
            multiple
  s           0    0.598003833  0.598003833   1.196007665   0.000000000
   sum over m      0.598003833  0.598003833   1.196007665   0.000000000
   sum over m+mul  0.598003833  0.598003833   1.196007665   0.000000000
  px          0    0.588514078  0.588514078   1.177028156   0.000000000
  py          0    0.588703212  0.588703212   1.177406425   0.000000000
  pz          0    0.588514085  0.588514085   1.177028171   0.000000000
   sum over m      1.765731376  1.765731376   3.531462752   0.000000000
   sum over m+mul  1.765731376  1.765731376   3.531462752   0.000000000

    2    H          Up spin      Down spin     Sum           Diff
            multiple
  s           0    0.409066202  0.409066202   0.818132405   0.000000000
   sum over m      0.409066202  0.409066202   0.818132405   0.000000000
   sum over m+mul  0.409066202  0.409066202   0.818132405   0.000000000

    3    H          Up spin      Down spin     Sum           Diff
            multiple
  s           0    0.409066194  0.409066194   0.818132388   0.000000000
   sum over m      0.409066194  0.409066194   0.818132388   0.000000000
   sum over m+mul  0.409066194  0.409066194   0.818132388   0.000000000

    4    H          Up spin      Down spin     Sum           Diff
            multiple
  s           0    0.409066200  0.409066200   0.818132400   0.000000000
   sum over m      0.409066200  0.409066200   0.818132400   0.000000000
   sum over m+mul  0.409066200  0.409066200   0.818132400   0.000000000

    5    H          Up spin      Down spin     Sum           Diff
            multiple
  s           0    0.409066195  0.409066195   0.818132389   0.000000000
   sum over m      0.409066195  0.409066195   0.818132389   0.000000000
   sum over m+mul  0.409066195  0.409066195   0.818132389   0.000000000

***********************************************************
***********************************************************
                    Dipole moment (Debye)                  
***********************************************************
***********************************************************

 Absolute D        0.00000009

                      Dx                Dy                Dz
 Total              0.00000004        0.00000005       -0.00000007
 Core               0.00000000        0.00000000        0.00000000
 Electron           0.00000004        0.00000005       -0.00000007
 Back ground       -0.00000000       -0.00000000        0.00000000

***********************************************************
***********************************************************
       xyz-coordinates (Ang) and forces (Hartree/Bohr)  
***********************************************************
***********************************************************

<coordinates.forces
  5
    1     C     0.00000   0.00000   0.00000  -0.000000037541  0.000...
    2     H    -0.88998  -0.62931   0.00000  -0.048431334064 -0.034...
    3     H     0.00000   0.62931  -0.88998   0.000000053600  0.034...
    4     H     0.00000   0.62931   0.88998  -0.000000012054  0.034...
    5     H     0.88998  -0.62931   0.00000   0.048431331537 -0.034...
coordinates.forces>

***********************************************************
***********************************************************
       Fractional coordinates of the final structure       
***********************************************************
***********************************************************

     1      C     0.00000000000000   0.00000000000000   0.00000000000000
     2      H     0.86968043640398   0.89633135611159   0.00000000000000
     3      H     0.00000000000000   0.10366864388841   0.86968043640398
     4      H     0.00000000000000   0.10366864388841   0.13031956359602
     5      H     0.13031956359602   0.89633135611159   0.00000000000000

***********************************************************
***********************************************************
               Computational Time (second)                 
***********************************************************
***********************************************************

   Elapsed.Time.        18.554

                            Min_ID    Min_Time    Max_ID    Max_Time
   Total Computational Time =  0       18.554       0       18.554
   readfile                 =  0       16.096       0       16.096
   truncation               =  0        0.728       0        0.728
   MD_pac                   =  0        0.010       0        0.010
   DFT                      =  0        1.376       0        1.376

*** In DFT ***

   Set_OLP_Kin              =  0        0.119       0        0.119
   Set_Nonlocal             =  0        0.198       0        0.198
   Set_Hamiltonian          =  0        0.087       0        0.087
   Poisson                  =  0        0.118       0        0.118
   Diagonalization          =  0        0.023       0        0.023
   Mixing_DM                =  0        0.002       0        0.002
   Force                    =  0        0.288       0        0.288
   Total_Energy             =  0        0.111       0        0.111
   Set_Aden_Grid            =  0        0.027       0        0.027
   Set_Orbitals_Grid        =  0        0.111       0        0.111
   Set_Density_Grid         =  0        0.053       0        0.053
   Others                   =  0        0.237       0        0.237

The files, met.tden.cube, met.v0.cube, met.vhart.cube, are the total electron density, the Kohn-Sham potential, and the Hartree potential, respectively, which are output in the Gaussian cube format. Since the Gaussian cube format is one of well used grid formats, you can visualize the files using free molecular modeling software such as gOpenMol [48], Molekel [49], and XCrysDen [50]. The visualization will be illustrated in the latter section.


next up previous contents index
Next: Automatic running test Up: User's manual of OpenMX Previous: Tips for installation   Contents   Index
2009-08-28