Next: Installation
Up: User's manual of OpenMX
Previous: Contents
  Contents
  Index
OpenMX (Open source package for Material eXplorer) is a software package for
nano-scale material simulations based on density functional theories (DFT) [1],
norm-conserving pseudopotentials [2,20,21], and pseudo-atomic
localized basis functions [23]. Since the code is designed for the realization
of large-scale ab initio calculations on parallel computers, it is anticipated that
OpenMX can be a useful and powerful tool for nano-scale material sciences in a wide variety
of systems such as bio-materials, carbon nanotubes, magnetic materials, and nanoscale
conductors.
The distribution of the program package and the source codes follow the practice of
the GNU General Public License (GPL) [47], and they are
downloadable from http:http://www.openmx-square.org/
Features and capabilities of OpenMX Ver. 3.5 are as follows:
- Total energy and forces by cluster, band, and O() methods
- Local density approximation (LDA, LSDA) [2,3,4]
and generalized gradient
approximation (GGA) [5] to the exchange-correlation potential
- Norm-conserving pseudopotentials [2,20,21]
- Variationally optimized pseudo-atomic basis functions [23]
- Fully and scalar relativistic treatment within pseudopotential
scheme [10,19,13]
- Non-collinear DFT [6,7,8,9]
- Constraint DFT for non-collinear spin and orbital orientation [11]
- Collinear LDA+U and non-collinear LDA+U methods [16]
- Macroscopic polarization by Berry's phase [12]
- Divide-conquer (DC) method [28], generalized DC method,
and Krylov subspace method for O() eigenvalue solver
- Simple, RMM-DIIS [31], GR-Pulay [30],
Kerker [32], and RMM-DIIS with Kerker's metric [31]
charge mixing schemes
- Exchange coupling parameter [14,15]
- Optical conductivity
- Charge doping
- Uniform electric field
- Full and constrained geometry optimization
- Electric transport calculation by a non-equilibrium Green's
function method
- Construction of maximally localized wannier functions
- NVE ensemble molecular dynamics
- NVT ensemble molecular dynamics by a velocity scaling
[17] and the Nose-Hoover methods [18]
- Mulliken, Voronoi, and ESP fitting analysis of charge and spin densities
- Analysis of wave functions and electron (spin) densities
- Dispersion analysis by the band calculation
- Density of states (DOS) and projected DOS
- Flexible data format for the input
- Completely dynamic memory allocation
- Parallel execution by Message Passing Interface (MPI)
- Parallel execution by OpenMP
- Useful user interface for developers
- Evaluation of two-center integrals using Fourier transformation
[27]
- Evaluation of three-center integrals by a projector expansion method
[24]
- Solution of Poisson's equation using FFT [26]
Considerable functionalities are available for calculations
of physical properties such as magnetic, dielectric, electric
transport properties as listed above.
Not only conventional diagonalization schemes are provided for
clusters, molecules, slab, and solids, but also linear scaling methods
are supported as the eigenvalue solver.
Three calculation parts in OpenMX are mainly time-consuming:
- Evaluation of Hamiltonian matrix elements
- Solution of Poisson's equation
- Diagonalization of the generalized secular equation
For the first and second parts, the computational time always
scales as O() and O() for any eigenvalue solver,
where is the number of atoms, basis functions, or grid
points. When the conventional diagonalization scheme
(cluster and band methods) is used, the computational time for
the third part scales as O(). On the other hand, the O()
methods can solve the eigenvalue problem in O() operation in
exchange for accuracy.
For large scale calculations parallel execution by MPI or OpenMX is
supported for parallel machines. The hybrid parallelization by
OpenMP/MPI is also supported which is suitable for PC cluster consisting
of multicore processors.
All work arrays in the program codes are dynamically
allocated with the minimum memory size required by an input file.
The execution environment is unix and linux. For the execution of OpenMX,
you are required to possess pseudo-atomic basis orbitals and
pseudopotentials.
These input data can be calculated using ADPACK which is a program package
for atomic density functional calculations.
Conveniently, the data for several elements and ADPACK are available
from a web site (http://www.openmx-square.org/).
We are continuously working toward development.
Motivated contributors who want to develop the open source
codes are welcome. If so, the contact information is available
in the above website.
Next: Installation
Up: User's manual of OpenMX
Previous: Contents
  Contents
  Index
2009-08-28