The orbital magnetic moment at each atomic site is calculated as default in the non-collinear DFT. Since the orbital magnetic moment appears as a manifestation of spin-orbit coupling (SOC), the calculated values become finite when the SOC is included [63,64]. As an example, a non-collinear LDA+U (U=5eV) calculation of iron monoxide bulk is illustrated using an input file FeO_NC.dat in the directory 'work'. As for the LDA+U calculation, see the Section 'LDA+U'. The calculated orbital and spin magnetic moments at the Fe site are listed in Table 4. Also, you can find the orientation of the (decomposed) orbital moment in *.out, where * means 'System.Name' as follows:
*********************************************************** *********************************************************** Orbital moments *********************************************************** *********************************************************** Total Orbital Moment (muB) 0.000000070 Angles (Deg) 113.644105951 -65.722115195 Orbital moment (muB) theta (Deg) phi (Deg) 1 Fe 1.01127 128.64444 50.80973 2 Fe 1.01127 51.35556 230.80973 3 O 0.00000 122.13287 8.40916 4 O 0.00000 58.29296 151.31925 Decomposed Orbital Moments 1 Fe Orbital Moment(muB) Angles (Deg) multiple s 0 0.000000000 90.0000 0.0000 sum over m 0.000000000 90.0000 0.0000 s 1 0.000000000 90.0000 0.0000 sum over m 0.000000000 90.0000 0.0000 px 0 0.000032282 44.0757 90.0000 py 0 0.000027194 31.5419 -0.0000 pz 0 0.000026842 90.0000 57.4970 sum over m 0.000070741 49.0444 57.5709 px 1 0.004596036 10.8026 -90.0000 py 1 0.004533432 5.2237 180.0000 pz 1 0.000955444 90.0000 244.3929 sum over m 0.009229130 11.9479 244.3959 d3z^2-r^2 0 0.045401124 90.0000 224.3492 dx^2-y^2 0 0.075657665 24.3023 228.5632 dxy 0 0.453606172 81.2632 50.2745 dxz 0 0.495766350 143.9475 -10.8730 dyz 0 0.531382963 138.9632 98.7434 sum over m 0.997255210 131.7287 51.1391 d3z^2-r^2 1 0.001075694 90.0000 254.7742 dx^2-y^2 1 0.012694575 26.6388 225.7504 dxy 1 0.036086417 71.5849 49.3240 dxz 1 0.031150186 132.6513 -13.0079 dyz 1 0.033740724 128.7200 99.3874 sum over m 0.058459849 109.4476 49.1020 f5z^2-3r^2 0 0.007365273 90.0000 39.4321 f5xz^2-xr^2 0 0.005659459 26.2551 124.3549 f5yz^2-yr^2 0 0.006152658 34.4173 -38.4581 fzx^2-zy^2 0 0.015290504 34.2465 224.2021 fxyz 0 0.012904266 11.6263 244.9193 fx^3-3*xy^2 0 0.004957037 43.3387 -84.7645 f3yx^2-y^3 0 0.004826463 41.6700 183.4396 sum over m 0.043385660 10.6323 246.7139 ..... ...
As shown in Table 4, OpenMX gives a good agreement for both the
spin and orbital magnetic moments of a series of -transition
metal oxides with other calculation results.
However, it is noted that the absolute value of orbital magnetic moment
seems to be significantly influenced by calculation conditions
such as basis functions and on-site 'U' in the LDA+U method,
while the spin magnetic moment is relatively insensitive to
the calculation conditions, and that a rather rich basis set including
polarization functions will be needed for convergent calculations of
the orbital magnetic moment.
Compound | OpenMX | Other calc. | OpenMX | Other calc. | Expt. in total |
MnO | 4.560 | 4.49 | 0.001 | 0.00 | 4.79,4.58 |
FeO | 3.582 | 3.54 | 1.010 | 1.01 | 3.32 |
CoO | 2.684 | 2.53 | 1.088 | 1.19 | 3.35,3.8 |
NiO | 1.594 | 1.53 | 0.173 | 0.27 | 1.77,1.64,1.90 |