LDA+U methods with different definitions of the occupation number operator [16] are available for both the collinear and non-collinear calculations by the following keyword 'scf.Hubbard.U':
scf.Hubbard.U on # On|Off, default=off
scf.Hubbard.Occupation dual # onsite|full|dual, default=dual
<Definition.of.Atomic.Species Ni Ni5.5-s2p2d2 Ni_LDA O O4.5-s2p2d1 O_LDA Definition.of.Atomic.Species>
<Hubbard.U.values # eV Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 4.0 2d 0.0 O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0 Hubbard.U.values>
*********************************************************** *********************************************************** Occupation Number in LDA+U and Constraint DFT Eigenvalues and eigenvectors for a matrix consisting of occupation numbers on each site *********************************************************** *********************************************************** 1 Ni spin= 0 Sum = 8.674098295491 1 2 3 4 5 6 7 8 Individual -0.0016 0.1334 0.1334 0.1349 0.2903 0.9948 0.9948 0.9953 s 0 -0.0111 0.0000 -0.0004 -0.0004 0.9999 0.0000 -0.0059 -0.0045 s 1 0.9999 0.0000 0.0003 0.0077 0.0111 -0.0000 0.0023 0.0016 px 0 0.0019 0.0383 0.0201 -0.0324 -0.0042 -0.6993 -0.7016 -0.0055 py 0 0.0020 0.0000 -0.0448 -0.0278 -0.0043 -0.0000 0.0059 -0.9850 pz 0 0.0019 -0.0383 0.0201 -0.0324 -0.0042 0.6995 -0.7014 -0.0055 px 1 -0.0044 -0.7060 -0.3724 0.5996 -0.0002 -0.0374 -0.0396 -0.0029 py 1 -0.0042 -0.0002 0.8486 0.5259 0.0003 -0.0000 -0.0019 -0.0539 pz 1 -0.0044 0.7062 -0.3720 0.5996 -0.0002 0.0374 -0.0395 -0.0029 d3z^2-r^2 0 0.0000 0.0028 -0.0016 0.0001 0.0003 0.1080 -0.0367 0.0589 dx^2-y^2 0 0.0000 -0.0016 -0.0028 0.0001 0.0004 -0.0623 -0.0636 0.1021 dxy 0 -0.0000 -0.0034 0.0036 0.0229 0.0006 -0.0414 0.0590 0.0406 dxz 0 0.0002 0.0000 -0.0024 0.0232 0.0006 -0.0000 0.0168 0.0976 dyz 0 -0.0000 0.0034 0.0036 0.0229 0.0006 0.0414 0.0590 0.0406 9 10 11 12 13 Individual 0.9989 0.9989 0.9995 1.0006 1.0007 s 0 -0.0000 0.0000 -0.0000 -0.0000 0.0004 ..... ...
The LDA+U functional possesses multiple minima in the degree of freedom of the orbital occupation, leading to that the SCF calculation tends to be trapped to some local minimum. To find the ground state with an orbital polarization, a way of enhancing explicitly the orbital polarization is available by the following switch :
For collinear cases <Atoms.SpeciesAndCoordinates # Unit=AU 1 Ni 0.0 0.0 0.0 10.0 6.0 on 2 Ni 3.94955 3.94955 0.0 6.0 10.0 on 3 O 3.94955 0.0 0.0 3.0 3.0 on 4 O 3.94955 3.94955 3.94955 3.0 3.0 on Atoms.SpeciesAndCoordinates> For non-collinear cases <Atoms.SpeciesAndCoordinates # Unit=AU 1 Ni 0.0 0.0 0.0 10.0 6.0 40.0 10.0 0 0 on 2 Ni 3.94955 3.94955 0.0 6.0 10.0 40.0 10.0 0 0 on 3 O 3.94955 0.0 0.0 3.0 3.0 10.0 40.0 0 0 on 4 O 3.94955 3.94955 3.94955 3.0 3.0 10.0 40.0 0 0 on Atoms.SpeciesAndCoordinates>