LDA+U methods with different definitions of the occupation number operator [16] are available for both the collinear and non-collinear calculations by the following keyword 'scf.Hubbard.U':
scf.Hubbard.U on # On|Off, default=off
scf.Hubbard.Occupation dual # onsite|full|dual, default=dual
<Definition.of.Atomic.Species
Ni Ni5.5-s2p2d2 Ni_LDA
O O4.5-s2p2d1 O_LDA
Definition.of.Atomic.Species>
<Hubbard.U.values # eV
Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 4.0 2d 0.0
O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0
Hubbard.U.values>
***********************************************************
***********************************************************
Occupation Number in LDA+U and Constraint DFT
Eigenvalues and eigenvectors for a matrix consisting
of occupation numbers on each site
***********************************************************
***********************************************************
1 Ni
spin= 0
Sum = 8.674098295491
1 2 3 4 5 6 7 8
Individual -0.0016 0.1334 0.1334 0.1349 0.2903 0.9948 0.9948 0.9953
s 0 -0.0111 0.0000 -0.0004 -0.0004 0.9999 0.0000 -0.0059 -0.0045
s 1 0.9999 0.0000 0.0003 0.0077 0.0111 -0.0000 0.0023 0.0016
px 0 0.0019 0.0383 0.0201 -0.0324 -0.0042 -0.6993 -0.7016 -0.0055
py 0 0.0020 0.0000 -0.0448 -0.0278 -0.0043 -0.0000 0.0059 -0.9850
pz 0 0.0019 -0.0383 0.0201 -0.0324 -0.0042 0.6995 -0.7014 -0.0055
px 1 -0.0044 -0.7060 -0.3724 0.5996 -0.0002 -0.0374 -0.0396 -0.0029
py 1 -0.0042 -0.0002 0.8486 0.5259 0.0003 -0.0000 -0.0019 -0.0539
pz 1 -0.0044 0.7062 -0.3720 0.5996 -0.0002 0.0374 -0.0395 -0.0029
d3z^2-r^2 0 0.0000 0.0028 -0.0016 0.0001 0.0003 0.1080 -0.0367 0.0589
dx^2-y^2 0 0.0000 -0.0016 -0.0028 0.0001 0.0004 -0.0623 -0.0636 0.1021
dxy 0 -0.0000 -0.0034 0.0036 0.0229 0.0006 -0.0414 0.0590 0.0406
dxz 0 0.0002 0.0000 -0.0024 0.0232 0.0006 -0.0000 0.0168 0.0976
dyz 0 -0.0000 0.0034 0.0036 0.0229 0.0006 0.0414 0.0590 0.0406
9 10 11 12 13
Individual 0.9989 0.9989 0.9995 1.0006 1.0007
s 0 -0.0000 0.0000 -0.0000 -0.0000 0.0004
.....
...
![]() |
The LDA+U functional possesses multiple minima in the degree of freedom of the orbital occupation, leading to that the SCF calculation tends to be trapped to some local minimum. To find the ground state with an orbital polarization, a way of enhancing explicitly the orbital polarization is available by the following switch :
For collinear cases
<Atoms.SpeciesAndCoordinates # Unit=AU
1 Ni 0.0 0.0 0.0 10.0 6.0 on
2 Ni 3.94955 3.94955 0.0 6.0 10.0 on
3 O 3.94955 0.0 0.0 3.0 3.0 on
4 O 3.94955 3.94955 3.94955 3.0 3.0 on
Atoms.SpeciesAndCoordinates>
For non-collinear cases
<Atoms.SpeciesAndCoordinates # Unit=AU
1 Ni 0.0 0.0 0.0 10.0 6.0 40.0 10.0 0 0 on
2 Ni 3.94955 3.94955 0.0 6.0 10.0 40.0 10.0 0 0 on
3 O 3.94955 0.0 0.0 3.0 3.0 10.0 40.0 0 0 on
4 O 3.94955 3.94955 3.94955 3.0 3.0 10.0 40.0 0 0 on
Atoms.SpeciesAndCoordinates>